The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debata...The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debatable. Fe-Ti oxide minerals are seldom used to study sediment provenance, expecially using scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). In this study, the provenance of Quaternary sediments in Yichang area, which is located to the east of the Yangtze Three Gorges, was investigated by using SEM and EDS to research Fe-Ti oxides. The Panzhihua vanadium titanomagnetite and Emeishan basalt outcrop are located to the west of the Three Gorges. Further, the materials from them are observed in the Quaternary sediments of Yichang area. Fe-Ti oxide minerals from the Huangling granite are observed in the Yunchi and Shanxiyao Formations, which were formed before 0.75 Ma B.P., whereas Fe-Ti oxide minerals from the Huangling granite, Panzhihua vanadium titanomagnetite, and Emeishan basalt are observed in the riverbed and fifth-terrace sediments of the Yangtze River, which were formed after 0.73 Ma B.P.. Thus, we can infer that the Three Gorges formed after the deposition of the Shanxi Formation and before the fifth-terrace; i.e., 0.75-0.73 Ma B.P..展开更多
In this paper,based on the collected data and earthquake field investigation,characteristics of the MS4.1 Hujiaping earthquake of November 22,2008 at Guizhou town in Zigui county,Hubei Province and the geological and ...In this paper,based on the collected data and earthquake field investigation,characteristics of the MS4.1 Hujiaping earthquake of November 22,2008 at Guizhou town in Zigui county,Hubei Province and the geological and hydrogeological conditions and seismicity background of the area are analyzed,and the earthquake disaster is presented. Some scientific issues relating to earthquake precursors and the cause of the earthquake is discussed. The authors consider that the earthquake is a tectonic type reservoir-induced earthquake,occurring along the Xiannvshan fault under the joint action of reservoir water loading and water infiltration,and that there were certain suspected anomalies appearing in the gravity field before the earthquake. The cause of the earthquake may also be related to the effect of the Wenchuan earthquake on the local stress field.展开更多
This report provides a summary of the climate, as well as the major weather and climate events,over the Three Gorges Region of the Yangtze River(TGR) in 2018. The annual mean temperature over the TGR in 2018 was 0.2℃...This report provides a summary of the climate, as well as the major weather and climate events,over the Three Gorges Region of the Yangtze River(TGR) in 2018. The annual mean temperature over the TGR in 2018 was 0.2℃ above normal, and precipitation was near normal. Seasonal highlights included a second warmest spring in the 58-year period of records, with abundant rainfall, which resulted in the wettest March on record. Furthermore, this was the fourth-warmest summer on record in the TGR, which contributed a higher-than-normal number of hot days in2018. Precipitation was 17% and 30% less-than-normal in winter and summer, and 40% and 6% above average in spring and autumn, respectively. The annual mean wind speed in the TGR was higher than normal, and the annual mean relative humidity was near normal. The intensity of acid rain was relatively weak, being the second-weakest year since 1999. The major meteorological disaster types in the TGR include heat waves, drought, rainstorms and flooding, freezing rain, and snow. Heat waves occurred early in the summer and persisted for long durations with strong intensities. Long-term precipitation deficits resulted in drought conditions in summer 2018 across most regions of the TGR. Frequent heavy rainfall caused urban waterlogging. The early-year and late-year cold snaps were accompanied by heavy snowfall and rain over some locations across the TGR, which had adverse impacts on transportation, agriculture, electricity, and people’s lives.展开更多
Objective To define and evaluate the malaria transmission potential in the Yangtze River, following construction of the Three Gorges Reservoir. Methods Six villages, namely, Kaixian, Fengjie, Wanzhou, Fuling, Yubei, a...Objective To define and evaluate the malaria transmission potential in the Yangtze River, following construction of the Three Gorges Reservoir. Methods Six villages, namely, Kaixian, Fengjie, Wanzhou, Fuling, Yubei, and Zigui were selected for investigating the malaria transmission potential in the reservoir. Transmission potential was estimated by mathematical modeling and evaluation of the local malaria situation. Factors that influenced the transmission potential were analyzed using Poisson regression analysis in combination with Grey Systematic Theory (based on evaluation by the Delphi method). Results Indirect fluorescent antibody data and the incidence of malaria in the local population were consistent with the malaria transmission potential calculated for the area. Multivariate Poisson regression analysis showed a statistically significant association between the riparian zone and the man‐biting rate. Conclusion The risk of a malaria epidemic can be forecasted using the malaria transmission potential parameters investigated here which was closely correlated with the riparian zone.展开更多
Field investigation and laboratory work reveal that inhomogeneity of the deformation of the Xiannushan fault is mainly characterized by lateral zonation, longitudinal segmentation and downward stratification. Based on...Field investigation and laboratory work reveal that inhomogeneity of the deformation of the Xiannushan fault is mainly characterized by lateral zonation, longitudinal segmentation and downward stratification. Based on these results, a 3-D deformational structure model of the fault was established and its geometrical and kinematic characteristics in two main deformational stages i.e. the main Yanshanian and Himalayan were discussed. The directions of principal and the differential stresses in these two stages were determined by using conjugate joints, striations of fault planes and microstructures of the fault zone. The direction of σI is N-S in direction with differential stresses of 150-250 MPa in the Yanshanian, and N70E with a differential stress ranging from 80-120 MPa in the Himalayan.展开更多
A study has been made about the structural attribute of the NNW-trendingShizikou linear image belt in the head area of the reservoir of the Yangtze River Gorges and theevaluation of its crustal stability. On the basis...A study has been made about the structural attribute of the NNW-trendingShizikou linear image belt in the head area of the reservoir of the Yangtze River Gorges and theevaluation of its crustal stability. On the basis of regional geological surveys and by making astructural analysis and a multidisciplinary study, it has been ascertained that the segment withthe best displayed image characteristics is marked by a gravity gliding structure with a multilay-er gliding fold type architecture. This paper also analyzes the medium conditions, slope struc-ture and dynamic setting for the formation of the structure system.展开更多
The Yangtze River has nurtured the fertile land on both its banks and hundreds of millions of Chinese people. but its raging waters have also wreaked havoc on the people living in its reaches. Since the founding of Ne...The Yangtze River has nurtured the fertile land on both its banks and hundreds of millions of Chinese people. but its raging waters have also wreaked havoc on the people living in its reaches. Since the founding of New China, large-scale surveys, planning, scientific research and feasibility studies have been carried out in an effort to harness the展开更多
The Three Gorges Project on the Yangtze River was started in December 1994. It is the largest water conservancy and hydropower project in the present world with a comprehensive result of flood prevention, generating a...The Three Gorges Project on the Yangtze River was started in December 1994. It is the largest water conservancy and hydropower project in the present world with a comprehensive result of flood prevention, generating and navigation. The reservoir can hold 22.2 billion cubic metres of water, thus being able to cut the flood flow of 27, 000 to 33, 000 cubic metres per second. Its hydropower station will have a total generating equipment capacity of 18.2 million kw with an annual generating quantity of 84.7 billion kwh to supply energy for the economic development of east China, central China and展开更多
In accordance with the requirements of the National Key Technology R&D Program of the 11th "Five-year Plan", a densified seismic network consisting of 26 seismic stations was established at the Three Gorges Reservo...In accordance with the requirements of the National Key Technology R&D Program of the 11th "Five-year Plan", a densified seismic network consisting of 26 seismic stations was established at the Three Gorges Reservoir area in the section of Hubei Province in March 2009 (21 short-period seismographs, 5 broadband digital seismographs). From March to December, 2009, a total of 2,995 ML -0. 8 - 2. 9 earthquakes were detected during the trial impounding of the Three Gorges Reservoir ( water level rose from 145 m to 172.8m). Using the double difference earthquake location algorithm, 2,837 earthquakes were precisely re-located. The results show that the pattern of small local earthquake swarms in the Three Gorges Reservoir area took on a linear distribution or mass-like cluster distribution, the mass-like clusters of events were generally within a distance of 5 km from waterfront, and the linear distribution of the earthquakes could be extended to a distance of 16 km away from the waterfront. In the Hubei section of the Three Gorges Reservoir, earthquakes were mainly concentrated in the northern end of the Xiannvshan and Jiuwanxi faults near the Xiangxihe River, and along the banks of the Yangtze River at the west of Xietan township and the Shenlongxi area on the northern bank in the Badong region, with focal depths less than 10km, and 4km in average. Earthquake frequency in the reservoir region had a positive correlation with reservoir water level fluctuations, indicating that the seismicity belongs to reservoir induced earthquakes. Along the Shenlong River in the reservoir area, earthquakes showed three linear distributions in the northern Badong county, and distributed according to Karst distribution. There are underground rivers in the carbonate strata. When the reservoir was impounded, water permeated into the underground rivers, thus inducing earthquakes. Earthquakes in the areas on the crossriver segment of Xiannvshan fault, the Jiuwanxi fault and at the areas west of Xietan, Shazhen and Xizhen, may be related to the softening of discontinuities, such as the Nukou fault, the Xiannvshan fault, or the bedding joints, which would lead to failure of rock masses, thus, inducing earthquakes. However, convincing conclusions about the triggering mechanism still need further study. Additionally, near the areas south of Wenhua and Yanglin of Zigui county and at Rangkou town east of Badong county, mininginduced earthquakes occurred at the mines nearby, and on the shores of the reservoir are some collapse earthquakes.展开更多
基金supported by the Project of the National Natural Science Foundation of China (Grant No. 41572093, 41072083, 40602011)the Open Foundation of Shangdong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Mineralthe Cultivating Program of Young and Middle-aged Backbone Teachers of Chengdu University of Technology
文摘The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debatable. Fe-Ti oxide minerals are seldom used to study sediment provenance, expecially using scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). In this study, the provenance of Quaternary sediments in Yichang area, which is located to the east of the Yangtze Three Gorges, was investigated by using SEM and EDS to research Fe-Ti oxides. The Panzhihua vanadium titanomagnetite and Emeishan basalt outcrop are located to the west of the Three Gorges. Further, the materials from them are observed in the Quaternary sediments of Yichang area. Fe-Ti oxide minerals from the Huangling granite are observed in the Yunchi and Shanxiyao Formations, which were formed before 0.75 Ma B.P., whereas Fe-Ti oxide minerals from the Huangling granite, Panzhihua vanadium titanomagnetite, and Emeishan basalt are observed in the riverbed and fifth-terrace sediments of the Yangtze River, which were formed after 0.73 Ma B.P.. Thus, we can infer that the Three Gorges formed after the deposition of the Shanxi Formation and before the fifth-terrace; i.e., 0.75-0.73 Ma B.P..
文摘In this paper,based on the collected data and earthquake field investigation,characteristics of the MS4.1 Hujiaping earthquake of November 22,2008 at Guizhou town in Zigui county,Hubei Province and the geological and hydrogeological conditions and seismicity background of the area are analyzed,and the earthquake disaster is presented. Some scientific issues relating to earthquake precursors and the cause of the earthquake is discussed. The authors consider that the earthquake is a tectonic type reservoir-induced earthquake,occurring along the Xiannvshan fault under the joint action of reservoir water loading and water infiltration,and that there were certain suspected anomalies appearing in the gravity field before the earthquake. The cause of the earthquake may also be related to the effect of the Wenchuan earthquake on the local stress field.
基金supported by the National Key R&D Program of China [grant numbers 2017YFC1502402,2017YFD0300201 and2017YFA0605004]the funds of comprehensive monitoring of the Three Gorges Project,which was financed by the Ministry of Water Resources of China.
文摘This report provides a summary of the climate, as well as the major weather and climate events,over the Three Gorges Region of the Yangtze River(TGR) in 2018. The annual mean temperature over the TGR in 2018 was 0.2℃ above normal, and precipitation was near normal. Seasonal highlights included a second warmest spring in the 58-year period of records, with abundant rainfall, which resulted in the wettest March on record. Furthermore, this was the fourth-warmest summer on record in the TGR, which contributed a higher-than-normal number of hot days in2018. Precipitation was 17% and 30% less-than-normal in winter and summer, and 40% and 6% above average in spring and autumn, respectively. The annual mean wind speed in the TGR was higher than normal, and the annual mean relative humidity was near normal. The intensity of acid rain was relatively weak, being the second-weakest year since 1999. The major meteorological disaster types in the TGR include heat waves, drought, rainstorms and flooding, freezing rain, and snow. Heat waves occurred early in the summer and persisted for long durations with strong intensities. Long-term precipitation deficits resulted in drought conditions in summer 2018 across most regions of the TGR. Frequent heavy rainfall caused urban waterlogging. The early-year and late-year cold snaps were accompanied by heavy snowfall and rain over some locations across the TGR, which had adverse impacts on transportation, agriculture, electricity, and people’s lives.
基金supported financially by the Public Project(20080219)of Ministry of Science and Technology in China
文摘Objective To define and evaluate the malaria transmission potential in the Yangtze River, following construction of the Three Gorges Reservoir. Methods Six villages, namely, Kaixian, Fengjie, Wanzhou, Fuling, Yubei, and Zigui were selected for investigating the malaria transmission potential in the reservoir. Transmission potential was estimated by mathematical modeling and evaluation of the local malaria situation. Factors that influenced the transmission potential were analyzed using Poisson regression analysis in combination with Grey Systematic Theory (based on evaluation by the Delphi method). Results Indirect fluorescent antibody data and the incidence of malaria in the local population were consistent with the malaria transmission potential calculated for the area. Multivariate Poisson regression analysis showed a statistically significant association between the riparian zone and the man‐biting rate. Conclusion The risk of a malaria epidemic can be forecasted using the malaria transmission potential parameters investigated here which was closely correlated with the riparian zone.
文摘Field investigation and laboratory work reveal that inhomogeneity of the deformation of the Xiannushan fault is mainly characterized by lateral zonation, longitudinal segmentation and downward stratification. Based on these results, a 3-D deformational structure model of the fault was established and its geometrical and kinematic characteristics in two main deformational stages i.e. the main Yanshanian and Himalayan were discussed. The directions of principal and the differential stresses in these two stages were determined by using conjugate joints, striations of fault planes and microstructures of the fault zone. The direction of σI is N-S in direction with differential stresses of 150-250 MPa in the Yanshanian, and N70E with a differential stress ranging from 80-120 MPa in the Himalayan.
基金This study was a contribution to Water conservancy Project 16-2-1 of the Seventh Five-Year Plan(1985-1989),entruated by the Surveying Bureau of rhe Committee of Water Resources of the Changjiang(Yangetze)River.
文摘A study has been made about the structural attribute of the NNW-trendingShizikou linear image belt in the head area of the reservoir of the Yangtze River Gorges and theevaluation of its crustal stability. On the basis of regional geological surveys and by making astructural analysis and a multidisciplinary study, it has been ascertained that the segment withthe best displayed image characteristics is marked by a gravity gliding structure with a multilay-er gliding fold type architecture. This paper also analyzes the medium conditions, slope struc-ture and dynamic setting for the formation of the structure system.
文摘The Yangtze River has nurtured the fertile land on both its banks and hundreds of millions of Chinese people. but its raging waters have also wreaked havoc on the people living in its reaches. Since the founding of New China, large-scale surveys, planning, scientific research and feasibility studies have been carried out in an effort to harness the
文摘The Three Gorges Project on the Yangtze River was started in December 1994. It is the largest water conservancy and hydropower project in the present world with a comprehensive result of flood prevention, generating and navigation. The reservoir can hold 22.2 billion cubic metres of water, thus being able to cut the flood flow of 27, 000 to 33, 000 cubic metres per second. Its hydropower station will have a total generating equipment capacity of 18.2 million kw with an annual generating quantity of 84.7 billion kwh to supply energy for the economic development of east China, central China and
基金sponsored by the National Key Technology R&D Program (2008BAC38B04),China
文摘In accordance with the requirements of the National Key Technology R&D Program of the 11th "Five-year Plan", a densified seismic network consisting of 26 seismic stations was established at the Three Gorges Reservoir area in the section of Hubei Province in March 2009 (21 short-period seismographs, 5 broadband digital seismographs). From March to December, 2009, a total of 2,995 ML -0. 8 - 2. 9 earthquakes were detected during the trial impounding of the Three Gorges Reservoir ( water level rose from 145 m to 172.8m). Using the double difference earthquake location algorithm, 2,837 earthquakes were precisely re-located. The results show that the pattern of small local earthquake swarms in the Three Gorges Reservoir area took on a linear distribution or mass-like cluster distribution, the mass-like clusters of events were generally within a distance of 5 km from waterfront, and the linear distribution of the earthquakes could be extended to a distance of 16 km away from the waterfront. In the Hubei section of the Three Gorges Reservoir, earthquakes were mainly concentrated in the northern end of the Xiannvshan and Jiuwanxi faults near the Xiangxihe River, and along the banks of the Yangtze River at the west of Xietan township and the Shenlongxi area on the northern bank in the Badong region, with focal depths less than 10km, and 4km in average. Earthquake frequency in the reservoir region had a positive correlation with reservoir water level fluctuations, indicating that the seismicity belongs to reservoir induced earthquakes. Along the Shenlong River in the reservoir area, earthquakes showed three linear distributions in the northern Badong county, and distributed according to Karst distribution. There are underground rivers in the carbonate strata. When the reservoir was impounded, water permeated into the underground rivers, thus inducing earthquakes. Earthquakes in the areas on the crossriver segment of Xiannvshan fault, the Jiuwanxi fault and at the areas west of Xietan, Shazhen and Xizhen, may be related to the softening of discontinuities, such as the Nukou fault, the Xiannvshan fault, or the bedding joints, which would lead to failure of rock masses, thus, inducing earthquakes. However, convincing conclusions about the triggering mechanism still need further study. Additionally, near the areas south of Wenhua and Yanglin of Zigui county and at Rangkou town east of Badong county, mininginduced earthquakes occurred at the mines nearby, and on the shores of the reservoir are some collapse earthquakes.