A two-dimensional flow numerical model of the tidal reaches, which total length is more than 700 km, is established from Datong to the Yangtze River estuary. The tidal levels, velocities, diversion ratios and dynamic ...A two-dimensional flow numerical model of the tidal reaches, which total length is more than 700 km, is established from Datong to the Yangtze River estuary. The tidal levels, velocities, diversion ratios and dynamic axes before and after the separate regulation of each reach and combined regulation of all reaches are obtained. The comparative analysis shows that the regulation project of a separate reach basically has no impact on velocity distributions and variations of diversion ratios of upper and lower reaches, the variations of dynamic axes are only within the local scope of the project. The regulation project of a separate reach also has less impact on the water level in the lower adjacent reaches, but will make the water levels in the upper reaches rise. After the implementation of the regulation projects for all reaches, the rise of water level in the upstream reaches will have a cumulative impact.展开更多
The morphological evolution characteristics of the North-South Passage area since the construction of the Yangtze Estuary Deepwater Navigation Channel Project(DNCP)are analyzed on the basis of the measured data.A twod...The morphological evolution characteristics of the North-South Passage area since the construction of the Yangtze Estuary Deepwater Navigation Channel Project(DNCP)are analyzed on the basis of the measured data.A twodimensional morphodynamics numerical model of the Yangtze Estuary is established to verify the morphological evolution of the North-South Passage under the influence of the DNCP and to predict the future evolution in the next 40 years.Data analysis shows that the North Passage has experienced rapid adjustment stages and adaptive stages after the construction of the DNCP.Slow erosion occurred along the main channel,and slow siltation could be observed in the area between the groins.The South Passage showed a state of upper section erosion and down section deposition.At present,the whole South Passage is in a slight erosion state.According to the numerical model,the eroding and silting speed of the North Passage will slow down in the future.The present state that erosion occurs in the main channel and siltation occurs between the groins will continue.The South Passage will still maintain upper section erosion and down section deposition in the future.Due to the main channel erosion of the North Passage and siltation of the South Passage,the sediment division ratio of the North Passage will increase in the future but still be smaller than 50%.After morphological evolution of 40 years,the direction of residual sediment transport caused by M2 and M4 tidal components in the North Passage has not changed,but the transport rate will decrease.It is considered that the morphological evolution of the North-South Passage could reach a relatively stable state after 40 years.展开更多
Fractal interpolation has been an important method applied to engineering in recent years. It can not only be used to fit smooth curve and stationary data but also show its unique superiorities in the fatting of non-s...Fractal interpolation has been an important method applied to engineering in recent years. It can not only be used to fit smooth curve and stationary data but also show its unique superiorities in the fatting of non-smooth curve and non-stationary data. Through analyzing such characteristic values as average value, standard deviations, skewness and kurtosis of measured backsilting quantities in the Yangtze Estuary 12.5 m Deepwater Channel during2011–2017, the fractal interpolation method can be used to study the backsilting quantity distribution with time.According to the fractal interpolation made on the channel backsilting quantities from January 2011 to December2017, there was a good corresponding relationship between the annual(monthly) siltation quantities and the vertical scaling factor. On this basis, a calculation formula for prediction of the backsilting quantity in the Yangtze Estuary Deepwater Channel was constructed. With the relationship between the predicted annual backsilting quantities and the vertical scaling factor, the monthly backsilting quantities can be obtained. Thus, it provides a new method for estimating the backsilting quantity of the Yangtze Estuary Deepwater Channel.展开更多
The circumfluence around the Jiuduan Sandbank is thoroughly studied by means of the principle of least resistance in fluid dynamics. The diversion ratio of the North Channel for 1998 is calculated, which is almost the...The circumfluence around the Jiuduan Sandbank is thoroughly studied by means of the principle of least resistance in fluid dynamics. The diversion ratio of the North Channel for 1998 is calculated, which is almost the same as the field survey data. The normal and minimum diversion ratios of the North Channel after stages I , II and III regulation works as well as the future phase are obtained. The numerical results and predicted value are accurate.展开更多
The results from both the field measurements and numerical simulation were reported to comprehensively analyze the sediment siltation in the upper reach of the Deepwater Navigation Channel Project in the Yangtze Estua...The results from both the field measurements and numerical simulation were reported to comprehensively analyze the sediment siltation in the upper reach of the Deepwater Navigation Channel Project in the Yangtze Estuary after the project has been implemented. In this research, firstly some basic information about the river evolution in the Yangtze Estuary is analyzed, including the variations of water depths in the Hengsha Passage and the inlet cross-sections of the North Passage and the South Passage, and changes of diversion ratios of ebb flow and sediment flux in the North Passage and the South Passage, Then the Delfl3D-FLOW model is applied to simulate the hydrodynamics and sediment transport in the Yangtze Estuary. This model has been calibrated and the simulated results agree well with the measured data of the tidal levels, flow velocities and suspended sediment concentration (SSC), indicating that the model can well simulate the hydrodynamics and sediment transport of the Yangtze Estuary caused by the Deepwater Navigation Channel Project. The research results show that the development of the Hengsha Passage and decrease of diversion ratio of ebb flow and sediment flux in the North Passage are the main reasons of sediment siltation in the upper reach of the Deepwater Navigation Channel in the Yangtze Estuary.展开更多
基金financially supported by the Major Project"Golden Waterway Capacity Enhancement Technology"of Ministry of Transport of China(Grant No.201132874640)
文摘A two-dimensional flow numerical model of the tidal reaches, which total length is more than 700 km, is established from Datong to the Yangtze River estuary. The tidal levels, velocities, diversion ratios and dynamic axes before and after the separate regulation of each reach and combined regulation of all reaches are obtained. The comparative analysis shows that the regulation project of a separate reach basically has no impact on velocity distributions and variations of diversion ratios of upper and lower reaches, the variations of dynamic axes are only within the local scope of the project. The regulation project of a separate reach also has less impact on the water level in the lower adjacent reaches, but will make the water levels in the upper reaches rise. After the implementation of the regulation projects for all reaches, the rise of water level in the upstream reaches will have a cumulative impact.
基金the National Key R&D Program of China(Grant No.2017YFC0405400)the National Natural Science Foundation of China(Grant No.51979172)Innovation Team Project of Estuarine and Coastal Protection and Management(Grant No.Y220013).
文摘The morphological evolution characteristics of the North-South Passage area since the construction of the Yangtze Estuary Deepwater Navigation Channel Project(DNCP)are analyzed on the basis of the measured data.A twodimensional morphodynamics numerical model of the Yangtze Estuary is established to verify the morphological evolution of the North-South Passage under the influence of the DNCP and to predict the future evolution in the next 40 years.Data analysis shows that the North Passage has experienced rapid adjustment stages and adaptive stages after the construction of the DNCP.Slow erosion occurred along the main channel,and slow siltation could be observed in the area between the groins.The South Passage showed a state of upper section erosion and down section deposition.At present,the whole South Passage is in a slight erosion state.According to the numerical model,the eroding and silting speed of the North Passage will slow down in the future.The present state that erosion occurs in the main channel and siltation occurs between the groins will continue.The South Passage will still maintain upper section erosion and down section deposition in the future.Due to the main channel erosion of the North Passage and siltation of the South Passage,the sediment division ratio of the North Passage will increase in the future but still be smaller than 50%.After morphological evolution of 40 years,the direction of residual sediment transport caused by M2 and M4 tidal components in the North Passage has not changed,but the transport rate will decrease.It is considered that the morphological evolution of the North-South Passage could reach a relatively stable state after 40 years.
基金financially supported by the National Key R&D Program of China(Grant No.2017YFC0405400)the National Natural Science Foundation of China(Grant No.51479122)
文摘Fractal interpolation has been an important method applied to engineering in recent years. It can not only be used to fit smooth curve and stationary data but also show its unique superiorities in the fatting of non-smooth curve and non-stationary data. Through analyzing such characteristic values as average value, standard deviations, skewness and kurtosis of measured backsilting quantities in the Yangtze Estuary 12.5 m Deepwater Channel during2011–2017, the fractal interpolation method can be used to study the backsilting quantity distribution with time.According to the fractal interpolation made on the channel backsilting quantities from January 2011 to December2017, there was a good corresponding relationship between the annual(monthly) siltation quantities and the vertical scaling factor. On this basis, a calculation formula for prediction of the backsilting quantity in the Yangtze Estuary Deepwater Channel was constructed. With the relationship between the predicted annual backsilting quantities and the vertical scaling factor, the monthly backsilting quantities can be obtained. Thus, it provides a new method for estimating the backsilting quantity of the Yangtze Estuary Deepwater Channel.
文摘The circumfluence around the Jiuduan Sandbank is thoroughly studied by means of the principle of least resistance in fluid dynamics. The diversion ratio of the North Channel for 1998 is calculated, which is almost the same as the field survey data. The normal and minimum diversion ratios of the North Channel after stages I , II and III regulation works as well as the future phase are obtained. The numerical results and predicted value are accurate.
基金supported by the Key Subject Foundation of Shanghai Education Committee(Grant No.J50702)the Na-tional Key Basic Research Development Program of China(973 Program,Grant No.2012CB957704)
文摘The results from both the field measurements and numerical simulation were reported to comprehensively analyze the sediment siltation in the upper reach of the Deepwater Navigation Channel Project in the Yangtze Estuary after the project has been implemented. In this research, firstly some basic information about the river evolution in the Yangtze Estuary is analyzed, including the variations of water depths in the Hengsha Passage and the inlet cross-sections of the North Passage and the South Passage, and changes of diversion ratios of ebb flow and sediment flux in the North Passage and the South Passage, Then the Delfl3D-FLOW model is applied to simulate the hydrodynamics and sediment transport in the Yangtze Estuary. This model has been calibrated and the simulated results agree well with the measured data of the tidal levels, flow velocities and suspended sediment concentration (SSC), indicating that the model can well simulate the hydrodynamics and sediment transport of the Yangtze Estuary caused by the Deepwater Navigation Channel Project. The research results show that the development of the Hengsha Passage and decrease of diversion ratio of ebb flow and sediment flux in the North Passage are the main reasons of sediment siltation in the upper reach of the Deepwater Navigation Channel in the Yangtze Estuary.