The Xiangcheng-Luoji area is located in the conjunction of the southern part of the "Sanjiang" mineralization belt and the west margin of Yangtze craton. The geological studies were carried out to know the Indosinia...The Xiangcheng-Luoji area is located in the conjunction of the southern part of the "Sanjiang" mineralization belt and the west margin of Yangtze craton. The geological studies were carried out to know the Indosinian large porphyry Cu polymetallic deposits. Recent studies revealed that the area existed in the superposition of Late Yanshanian acidic intrusive rock belt and developed Mo-Cu polymetallic mineralization where promising exploration results have been achieved. Through the systematic study of geochronology, formation age of the Renlin Mo-minieralization monzogranite is 81.7±1.1 Ma. Re-Os dating results concentrate on 82.34±1.2–88.27±1.23 Ma for the model ages of molbdenite of Tongchanggou Mo deposits, average age is 85 ± 2 Ma where seven data points constitute a good isochron which shows that they were the same period products of mineralization. Geochemical features shown that the rocks have a high content of SiO 2(66.59–77.36wt%), alkaline-rich(K2O=2.68–6.08wt%; Na2O=0.50–4.91wt%; K2O/Na2 O ratios are 0.71–5.56, where average ratio of 1.89) and have aluminum–rich features(Al2O3 10.38–15.15wt%) with σ values less than 3.3. Which indicate that they belong to the high-K calc-alkali to shoshonite series. Geochemistry of Yanshanian intrusions shows that rocks are enrich in LREE with obvious negative δEu anomalies, enrichment of trace elements like, LILE elements(Rb, Th, Ba) with a relative loss of Ba, and loss of high field strength elements(Nb, Ta, P, Ti) and HREE elements. The granite genetic classification diagram shows that the granites belong to A-type granite and formatted in syn-collision tectonic environment. Meanwhile, the Yanshanian granites also inherited the characteristics of island arc environment which formed in the process of crustal melting caused by upwelling of asthenospheric substances in the extensional tectonic background. The process of partial melting existed substances from the deep(lower crust or upper mantle) which have been added. In the Xiangcheng-Luoji area, monzogranite and granodiorite porphyry bodies are widely developed Mo polymetallic mineralization, the deep porphyry mineralization have great potential for geological prospecting.展开更多
The Tongling ore cluster area experienced intensive compression and associated shearing during the Indosinian-Yanshanian Epoch, which formed a trunk ore-controlling fold and fault system in the caprock. The magmatic i...The Tongling ore cluster area experienced intensive compression and associated shearing during the Indosinian-Yanshanian Epoch, which formed a trunk ore-controlling fold and fault system in the caprock. The magmatic intrusion in the Yanshanian Epoch induced a multi-stage unmixing of poly-phase fluids, resulting in mineralization characterized by multi-layer, wide-range, and multiform styles. The magmatic intrusion in the Tongling area not only supplied the essential ore-forming materials, but also reconstructed the ore-controlling structures according to a trend surface simulation of the following five strata boundaries: Silurian-Devonian, Devonian-Carboniferous, Carboniferous- Permian, Middle Permian-Upper Permian and Permian -Triassic. The result of this simulation shows that there exists a significant difference between the strata in the upper part and those in the lower. The lower trend surfaces are antiform whereas the upper trend surfaces are synform. In addition, superposing of the trend surfaces of adjacent bed boundaries (such as, Silurian-Devonian boundary superposed upon Devonian-Carboniferous boundary) shows that the lower trend surface always pierces the one above. Moreover, the position and orientation of the pierced parts of the different superposed trend surfaces are similar and show E-W-trending zonal distribution in accordance with the distribution of the regional E-W-trending magmatic-metallogenic belt. Based on comprehensive analysis of the mechanical properties of the strata, structural deformation mechanisms, and field phenomena, it seems that the special characteristics of the stratal trend surface resulted from jacking due to magmatic intrusion into the caprock previously controlled by an E-W-trending basement fault. Therefore, it is deduced that the major ore-controlling structures, which formed during regional horizontal compression, were reconstructed by the vertical jacking function of ore-forming magmas during the Yanshanian Epoch. During the ore-forming process, the local vertical jacking of magmas, coupled with the regional horizontal compression, optimized an extensive environment in the fluid- conduit network and accelerated the unmixing of poly-phase fluids following magmatic emplacement. Jacking also strengthened the vertical and lateral fluid-guiding structures, supplying more suitable physical conditions for multi-layer emplacement and wide-ranging transport of poly-phase fluids.展开更多
The Tan-Lu Fault was once a transform fault in the Paleotethys, west of which was the Qinling-Dabie Ocean separating the Yangtze Craton from the North China Craton, and east of which was the Su-Lu Ocean separating the...The Tan-Lu Fault was once a transform fault in the Paleotethys, west of which was the Qinling-Dabie Ocean separating the Yangtze Craton from the North China Craton, and east of which was the Su-Lu Ocean separating the Su-Wan Block from the Jiao-Liao Craton. The Qinling-Dabie Ocean closed in the Indosinian orogeny, which created the China-Southeast Asia Subcontinent, with the Tan-Lu Fault becoming a marginal shear zone along the newly-formed amalgamated subcontinent. The Su-Lu Ocean subducted partly in the Indosinian.orogeny, but not closed. In the Jurassic and Early Cretaceous, the Su-Wan Block drifted northwards with subduction of the Su-Lu Ocean and moved westwards to converge the subcontinent by sinistral sheafing of the ENE-striking fractures. The Su-Lu Ocean finally closed and the Su-Wan Block collided with the Jiao-Liao Craton in the Early Cretaceous, which constituted a part of the magnificent interplate Yanshanides. The interplate orogeny rejuvenated the fossil sutures and deep fractures, as well as the Indosinian orogen, and the intraplate (intracontinental) Yanshanian orogeny occurred in the subcontinent. The East Asia Yanshanides, consisting of the interplate orogens in the outer side and the intraplate orogens in the inner side, collapsed quickly in the latest Early Cretaceous and Late Cretaceous. The eastern China area entered a tensile period from the Eogene, and the tectonic differentiation between the central and eastern China areas since the Jurassic was further strengthened.展开更多
Yanshanian igneous rocks in the East China, on an orogenic belt scale, are characterized by the continental marginal arc in petrology and geochemistry as Andes and West USA, except for the Hercyn type biotite two mi...Yanshanian igneous rocks in the East China, on an orogenic belt scale, are characterized by the continental marginal arc in petrology and geochemistry as Andes and West USA, except for the Hercyn type biotite two mica muscovite granite belt in the Nanling region. Three segments of the Yanshanian igneous rocks along the belt are recognized. In terms of magma tectonic event sequence, the north, middle and south segments have counter clockwise (ccw), clockwise (cw) and ccw+cw pTt paths of the orogenic process, respectively. A genetic model of the lithospheric delamination (loss of the lithospheric root in about 120 km) in combination with the oceanic subduction for the Yanshanian Andes like orogenic belt and both the crust and lithosphere thickening for the Yanshanian Hercyn type Nanling orogenic belt in the East China is suggested.展开更多
The Sanjiang area is an important granite distribution area in China,except for South China,in which granites is complex and complete.Based on fully collecting date about it,this paper explores the significance of ura...The Sanjiang area is an important granite distribution area in China,except for South China,in which granites is complex and complete.Based on fully collecting date about it,this paper explores the significance of uranium展开更多
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2009CB421007)the Science and Technology Leading Talents Training Plan Program of Yunnan Province (Grant No.2013HA001)
文摘The Xiangcheng-Luoji area is located in the conjunction of the southern part of the "Sanjiang" mineralization belt and the west margin of Yangtze craton. The geological studies were carried out to know the Indosinian large porphyry Cu polymetallic deposits. Recent studies revealed that the area existed in the superposition of Late Yanshanian acidic intrusive rock belt and developed Mo-Cu polymetallic mineralization where promising exploration results have been achieved. Through the systematic study of geochronology, formation age of the Renlin Mo-minieralization monzogranite is 81.7±1.1 Ma. Re-Os dating results concentrate on 82.34±1.2–88.27±1.23 Ma for the model ages of molbdenite of Tongchanggou Mo deposits, average age is 85 ± 2 Ma where seven data points constitute a good isochron which shows that they were the same period products of mineralization. Geochemical features shown that the rocks have a high content of SiO 2(66.59–77.36wt%), alkaline-rich(K2O=2.68–6.08wt%; Na2O=0.50–4.91wt%; K2O/Na2 O ratios are 0.71–5.56, where average ratio of 1.89) and have aluminum–rich features(Al2O3 10.38–15.15wt%) with σ values less than 3.3. Which indicate that they belong to the high-K calc-alkali to shoshonite series. Geochemistry of Yanshanian intrusions shows that rocks are enrich in LREE with obvious negative δEu anomalies, enrichment of trace elements like, LILE elements(Rb, Th, Ba) with a relative loss of Ba, and loss of high field strength elements(Nb, Ta, P, Ti) and HREE elements. The granite genetic classification diagram shows that the granites belong to A-type granite and formatted in syn-collision tectonic environment. Meanwhile, the Yanshanian granites also inherited the characteristics of island arc environment which formed in the process of crustal melting caused by upwelling of asthenospheric substances in the extensional tectonic background. The process of partial melting existed substances from the deep(lower crust or upper mantle) which have been added. In the Xiangcheng-Luoji area, monzogranite and granodiorite porphyry bodies are widely developed Mo polymetallic mineralization, the deep porphyry mineralization have great potential for geological prospecting.
基金the Fostering Plan Fund for Beyond-Century Excellent Talent of the Ministry of Education the Science and Technology Key Item of the Ministry of Education (No. 03178)+4 种基金 the National Natural Science Foundation of China (No. 40234051) the 0pen Foundation of the State Key Laboratory of Geological Processes and Mineral Resources (GPMR0528) the China Postdoctoral Science Foundation (2005038361) the Special Plans of Science and Technology of the Land Resources Department (No. 20010103) the 111 Project (No. B07011).
文摘The Tongling ore cluster area experienced intensive compression and associated shearing during the Indosinian-Yanshanian Epoch, which formed a trunk ore-controlling fold and fault system in the caprock. The magmatic intrusion in the Yanshanian Epoch induced a multi-stage unmixing of poly-phase fluids, resulting in mineralization characterized by multi-layer, wide-range, and multiform styles. The magmatic intrusion in the Tongling area not only supplied the essential ore-forming materials, but also reconstructed the ore-controlling structures according to a trend surface simulation of the following five strata boundaries: Silurian-Devonian, Devonian-Carboniferous, Carboniferous- Permian, Middle Permian-Upper Permian and Permian -Triassic. The result of this simulation shows that there exists a significant difference between the strata in the upper part and those in the lower. The lower trend surfaces are antiform whereas the upper trend surfaces are synform. In addition, superposing of the trend surfaces of adjacent bed boundaries (such as, Silurian-Devonian boundary superposed upon Devonian-Carboniferous boundary) shows that the lower trend surface always pierces the one above. Moreover, the position and orientation of the pierced parts of the different superposed trend surfaces are similar and show E-W-trending zonal distribution in accordance with the distribution of the regional E-W-trending magmatic-metallogenic belt. Based on comprehensive analysis of the mechanical properties of the strata, structural deformation mechanisms, and field phenomena, it seems that the special characteristics of the stratal trend surface resulted from jacking due to magmatic intrusion into the caprock previously controlled by an E-W-trending basement fault. Therefore, it is deduced that the major ore-controlling structures, which formed during regional horizontal compression, were reconstructed by the vertical jacking function of ore-forming magmas during the Yanshanian Epoch. During the ore-forming process, the local vertical jacking of magmas, coupled with the regional horizontal compression, optimized an extensive environment in the fluid- conduit network and accelerated the unmixing of poly-phase fluids following magmatic emplacement. Jacking also strengthened the vertical and lateral fluid-guiding structures, supplying more suitable physical conditions for multi-layer emplacement and wide-ranging transport of poly-phase fluids.
文摘The Tan-Lu Fault was once a transform fault in the Paleotethys, west of which was the Qinling-Dabie Ocean separating the Yangtze Craton from the North China Craton, and east of which was the Su-Lu Ocean separating the Su-Wan Block from the Jiao-Liao Craton. The Qinling-Dabie Ocean closed in the Indosinian orogeny, which created the China-Southeast Asia Subcontinent, with the Tan-Lu Fault becoming a marginal shear zone along the newly-formed amalgamated subcontinent. The Su-Lu Ocean subducted partly in the Indosinian.orogeny, but not closed. In the Jurassic and Early Cretaceous, the Su-Wan Block drifted northwards with subduction of the Su-Lu Ocean and moved westwards to converge the subcontinent by sinistral sheafing of the ENE-striking fractures. The Su-Lu Ocean finally closed and the Su-Wan Block collided with the Jiao-Liao Craton in the Early Cretaceous, which constituted a part of the magnificent interplate Yanshanides. The interplate orogeny rejuvenated the fossil sutures and deep fractures, as well as the Indosinian orogen, and the intraplate (intracontinental) Yanshanian orogeny occurred in the subcontinent. The East Asia Yanshanides, consisting of the interplate orogens in the outer side and the intraplate orogens in the inner side, collapsed quickly in the latest Early Cretaceous and Late Cretaceous. The eastern China area entered a tensile period from the Eogene, and the tectonic differentiation between the central and eastern China areas since the Jurassic was further strengthened.
文摘Yanshanian igneous rocks in the East China, on an orogenic belt scale, are characterized by the continental marginal arc in petrology and geochemistry as Andes and West USA, except for the Hercyn type biotite two mica muscovite granite belt in the Nanling region. Three segments of the Yanshanian igneous rocks along the belt are recognized. In terms of magma tectonic event sequence, the north, middle and south segments have counter clockwise (ccw), clockwise (cw) and ccw+cw pTt paths of the orogenic process, respectively. A genetic model of the lithospheric delamination (loss of the lithospheric root in about 120 km) in combination with the oceanic subduction for the Yanshanian Andes like orogenic belt and both the crust and lithosphere thickening for the Yanshanian Hercyn type Nanling orogenic belt in the East China is suggested.
基金the China Nuclear Industry Geological Bureau Project (Grant No. 201637,201638)
文摘The Sanjiang area is an important granite distribution area in China,except for South China,in which granites is complex and complete.Based on fully collecting date about it,this paper explores the significance of uranium