The Tan-Lu Fault was once a transform fault in the Paleotethys, west of which was the Qinling-Dabie Ocean separating the Yangtze Craton from the North China Craton, and east of which was the Su-Lu Ocean separating the...The Tan-Lu Fault was once a transform fault in the Paleotethys, west of which was the Qinling-Dabie Ocean separating the Yangtze Craton from the North China Craton, and east of which was the Su-Lu Ocean separating the Su-Wan Block from the Jiao-Liao Craton. The Qinling-Dabie Ocean closed in the Indosinian orogeny, which created the China-Southeast Asia Subcontinent, with the Tan-Lu Fault becoming a marginal shear zone along the newly-formed amalgamated subcontinent. The Su-Lu Ocean subducted partly in the Indosinian.orogeny, but not closed. In the Jurassic and Early Cretaceous, the Su-Wan Block drifted northwards with subduction of the Su-Lu Ocean and moved westwards to converge the subcontinent by sinistral sheafing of the ENE-striking fractures. The Su-Lu Ocean finally closed and the Su-Wan Block collided with the Jiao-Liao Craton in the Early Cretaceous, which constituted a part of the magnificent interplate Yanshanides. The interplate orogeny rejuvenated the fossil sutures and deep fractures, as well as the Indosinian orogen, and the intraplate (intracontinental) Yanshanian orogeny occurred in the subcontinent. The East Asia Yanshanides, consisting of the interplate orogens in the outer side and the intraplate orogens in the inner side, collapsed quickly in the latest Early Cretaceous and Late Cretaceous. The eastern China area entered a tensile period from the Eogene, and the tectonic differentiation between the central and eastern China areas since the Jurassic was further strengthened.展开更多
Six new high precision U-Pb zircon ID-TIMS ages plus thirteen in situ high spatial resolution U-Pb zircon LA-MC-ICPMS ages are reported from Jurassic plutonic(metaluminous to weakly peraluminous biotite granites)and J...Six new high precision U-Pb zircon ID-TIMS ages plus thirteen in situ high spatial resolution U-Pb zircon LA-MC-ICPMS ages are reported from Jurassic plutonic(metaluminous to weakly peraluminous biotite granites)and Jurassic to Cretaceous hypabyssal(dacites)rocks from Macao.Despite its relatively small area(~30 km^2),the new ages tightly constrain the Macao granitic magmatism to two periods ranging from 164.5±0.6 Ma to 162.9±0.7 Ma and 156.6±0.2 Ma to 155.5±0.8 Ma,separated by ca.6 Ma.Inherited zircons point to the existence of a basement with ages up to Paleo-Proterozoic and late Archean in the region.In addition,younger dacitic rocks were dated at 150.6±0.6 Ma and<120 Ma.U-Pb zircon ages and whole-rock REE data of Macao granites indicate that the first pulse is also represented in Hong Kong and Southeast(SE)China,while magmatism with the chemical characteristics of the second pulse seems to not be represented outside Macao.The two granitic magmatic pulses have distinct mineralogical and geochemical features that support their discrete nature rather than a continuum of comagmatic activity and suggest that the Macao granitic suite was incrementally assembled during a period of ca.9 Ma,a hypothesis also extendable to the neighboring Hong Kong region for a time lapse of ca.24 Ma.In Macao,the transition from granitic magmatism(Middle to Upper Jurassic)to the younger dacite dykes(Upper Jurassic to Lower Cretaceous)most likely corresponds to a change in the regional tectonic setting,from an extensional regime related with foundering of the subducting paleoPacific plate during the Early Yanshanian period to the reestablishment of a normal subduction system in SE China during the Late Yanshanian period.展开更多
文摘The Tan-Lu Fault was once a transform fault in the Paleotethys, west of which was the Qinling-Dabie Ocean separating the Yangtze Craton from the North China Craton, and east of which was the Su-Lu Ocean separating the Su-Wan Block from the Jiao-Liao Craton. The Qinling-Dabie Ocean closed in the Indosinian orogeny, which created the China-Southeast Asia Subcontinent, with the Tan-Lu Fault becoming a marginal shear zone along the newly-formed amalgamated subcontinent. The Su-Lu Ocean subducted partly in the Indosinian.orogeny, but not closed. In the Jurassic and Early Cretaceous, the Su-Wan Block drifted northwards with subduction of the Su-Lu Ocean and moved westwards to converge the subcontinent by sinistral sheafing of the ENE-striking fractures. The Su-Lu Ocean finally closed and the Su-Wan Block collided with the Jiao-Liao Craton in the Early Cretaceous, which constituted a part of the magnificent interplate Yanshanides. The interplate orogeny rejuvenated the fossil sutures and deep fractures, as well as the Indosinian orogen, and the intraplate (intracontinental) Yanshanian orogeny occurred in the subcontinent. The East Asia Yanshanides, consisting of the interplate orogens in the outer side and the intraplate orogens in the inner side, collapsed quickly in the latest Early Cretaceous and Late Cretaceous. The eastern China area entered a tensile period from the Eogene, and the tectonic differentiation between the central and eastern China areas since the Jurassic was further strengthened.
基金supported by the Macao Science and Technology Development Fund (FDCT 043/2014/A1)support of FCT (Portugal) through UID/GEO/ 50019/2013 to Instituto Dom Luiz,Universidade de Lisboa
文摘Six new high precision U-Pb zircon ID-TIMS ages plus thirteen in situ high spatial resolution U-Pb zircon LA-MC-ICPMS ages are reported from Jurassic plutonic(metaluminous to weakly peraluminous biotite granites)and Jurassic to Cretaceous hypabyssal(dacites)rocks from Macao.Despite its relatively small area(~30 km^2),the new ages tightly constrain the Macao granitic magmatism to two periods ranging from 164.5±0.6 Ma to 162.9±0.7 Ma and 156.6±0.2 Ma to 155.5±0.8 Ma,separated by ca.6 Ma.Inherited zircons point to the existence of a basement with ages up to Paleo-Proterozoic and late Archean in the region.In addition,younger dacitic rocks were dated at 150.6±0.6 Ma and<120 Ma.U-Pb zircon ages and whole-rock REE data of Macao granites indicate that the first pulse is also represented in Hong Kong and Southeast(SE)China,while magmatism with the chemical characteristics of the second pulse seems to not be represented outside Macao.The two granitic magmatic pulses have distinct mineralogical and geochemical features that support their discrete nature rather than a continuum of comagmatic activity and suggest that the Macao granitic suite was incrementally assembled during a period of ca.9 Ma,a hypothesis also extendable to the neighboring Hong Kong region for a time lapse of ca.24 Ma.In Macao,the transition from granitic magmatism(Middle to Upper Jurassic)to the younger dacite dykes(Upper Jurassic to Lower Cretaceous)most likely corresponds to a change in the regional tectonic setting,from an extensional regime related with foundering of the subducting paleoPacific plate during the Early Yanshanian period to the reestablishment of a normal subduction system in SE China during the Late Yanshanian period.