Two chiton specimens were collected from sedimentary habitat by China's manned Jiaolong submersible diving to a depth of 6 754 m in the north of the Yap Trench. This is a new locality record for chiton. Both morpholo...Two chiton specimens were collected from sedimentary habitat by China's manned Jiaolong submersible diving to a depth of 6 754 m in the north of the Yap Trench. This is a new locality record for chiton. Both morphological and molecular data support that the two specimens are the same species belonging to the genus Leptochiton. Morphologically, this species strongly resembles L. vanbellei and L. deforgesi. Phylogenetically, it has a close evolutionary relationship with L. vanbellei, L. deforgesi and L. boucheti. This is the third deepest record for deepsea chitons so far.展开更多
We present major and trace element data of lava recovered from the northern Yap Trench in the western Pacific and discuss their petrogenesis and tectonic implications within the framework of interactions between the C...We present major and trace element data of lava recovered from the northern Yap Trench in the western Pacific and discuss their petrogenesis and tectonic implications within the framework of interactions between the Caroline Ridge and Yap Trench.Rocks were collected from both landward and seaward trench slopes and exhibited geochemical characteristics similar to backarc basin basalt(BABB)and mid-ocean ridge basalt(MORB),including high Fe content,tholeiitic affinity,high TiO_(2) value at a given FeO_(T)/MgO ratio,Ti/V ratio between 20 and50,low Ba/Nb ratio and Th/Nb ratio,and trace element patterns commonly displayed by BABB and MORB,which are distinct from arc lava.These rocks seem to have been generated during mantle upwelling and decompression melting at a spreading center.However,compared with typical forearc lava produced by seafloor spreading in the Mariana forearc region,such as the early Eocene forearc basalts and late Neogene forearc lava in the southernmost Mariana Trench,the Yap Trench lava is derived from a more fertile mantle and feature a more minor subduction component;thus,they cannot be the products of forearc mantle decompression melting.We suggest that the landward slope lava represents backarc basin crust that was overthrust onto the forearc lithosphere during the collision of the Caroline Ridge with the Yap Trench(20–25 Ma),which played a key role in the evolution of the Yap subduction system.Moreover,the seaward slope lava represents the subduction plate crust that accreted onto the deep trench during the collision.This collision event resulted in the cessation of Yap Arc magmatism;thus,the Yap Trench volcanic rocks(<25 Ma)previously suggested to be arc magma products may actually represent the nascent island arc lava with a lower subduction component than in the mature Mariana Arc lava.展开更多
Sediment collapse and subsequent lateral downslope migration play important roles in shaping the habitats and regulating sedimentary organic carbon(SOC)cycling in hadal trenches.In this study,three sediment cores were...Sediment collapse and subsequent lateral downslope migration play important roles in shaping the habitats and regulating sedimentary organic carbon(SOC)cycling in hadal trenches.In this study,three sediment cores were collected using a human-occupied vehicle across the axis of the southern Yap Trench(SYT).The total organic carbon(TOC)and total nitrogen(TN)contents,δ13C,radiocarbon ages,specific surface areas,and grain size compositions of sediments from three cores were measured.We explored the influence of the lateral downslope transport on the dispersal of the sediments and established a tentative box model for the SOC balance.In the SYT,the surface TOC content decreased with water depth and was decoupled by the funneling effect of the V-shaped hadal trench.However,the sedimentation(0.0025 cm/a)and SOC accumulation rates(∼0.038 g/(m^(2)·a)(in terms of OC))were approximately 50%higher in the deeper hadal region than in the abyssal region(0.0016 cm/a and∼0.026 g/(m^(2)·a)(in terms of OC),respectively),indicating the occurrence of lateral downslope transport.The fluctuating variations in the prokaryotic abundances and the SOC accumulation rate suggest the periodic input of surficial sediments from the shallow region.The similar average TOC(0.31%–0.38%),TN(0.06%–0.07%)contents,and SOC compositions(terrestrial OC(11%–18%),marine phytoplanktonic OC(45%–53%),and microbial OC(32%–44%))of the three sites indicate that the lateral downslope transport has a significant mixing effect on the SOC composition.The output fluxes of the laterally transported SOC(0.44–0.56 g/(m^(2)·a)(in terms of OC))contributed approximately(47%–73%)of the total SOC input,and this proportion increased with water depth.The results of this study demonstrate the importance of lateral downslope transport in the spatial distribution and development of biomes.展开更多
2,4,6-Tripyridine-s-triazine(TPTZ)spectrophotometric method was applied to determine the concentrations of dissolved monosaccharides(MCHO),polysaccharides(PCHO),and total carbohydrate(TCHO)in seawater samples collecte...2,4,6-Tripyridine-s-triazine(TPTZ)spectrophotometric method was applied to determine the concentrations of dissolved monosaccharides(MCHO),polysaccharides(PCHO),and total carbohydrate(TCHO)in seawater samples collected from sea surface to hadal zone and sediment-seawater interface of the Southern Yap Trench in the Western Pacific Ocean.Results show that the concentrations of MCHO,PCHO,and TCHO ranged from 6.3 to 22.3μmol C/L,1.1 to 25.4μmol C/L,and 12.1 to 44.9μmol C/L,respectively,from the euphotic layer to the hadal zone of the trench.At different sampling stations,the concentrations of MCHO,PCHO,and TCHO in the seawater showed complex vertical variation characteristics,but the overall variation trends were decreasing with water depth.In the Southern Yap Trench,the maximum concentration of MCHO in the seawater appeared in the euphotic layer,and the minimum in the hadal zone.The maximum concentration of PCHO appeared in the euphotic layer,and the minimum in the bathypelagic layer.The water layer where the maxima and minima of the average concentration of TCHO appeared was consistent with that of PCHO.PCHO was the major component of TCHO in the seawater of the Southern Yap Trench.In the seawater from the sediment-seawater interface,the concentrations of MCHO,PCHO,and TCHO ranged from 8.4 to 10.6μmol C/L,3.8 to 5.8μmol C/L,and 12.2 to 15.2μmol C/L,respectively,and MCHO was the major component of TCHO.The key factors affecting the concentration and existing forms of dissolved sugars in the seawater of the Southern Yap Trench included photosynthesis,respiration,polysaccharide hydrolysis,adsorption and desorption of particulate matter,trench“funnel effect”,deep ocean currents,sediment resuspension,and etc.This study provided fundamental data about labile organic matter in abyss and hadal zone of marine environment,which is significant for further understanding of deep-sea organic carbon cycle.展开更多
Methane(CH_(4) )and dimethylsulphoniopropionate(DMSP)are major carbon and sulfur sources for bacterioplankton in the ocean.We investigated the characteristics of CH_(4) and DMSP in the southern Yap Trench from sea sur...Methane(CH_(4) )and dimethylsulphoniopropionate(DMSP)are major carbon and sulfur sources for bacterioplankton in the ocean.We investigated the characteristics of CH_(4) and DMSP in the southern Yap Trench from sea surface to hadal zone in June 2017.We found that concentrations of CH_(4) varied from 1.5 to 4.5 nmol/L with saturation between 94% and 204% in the euphotic layer.Concentrations of dissolved DMSP(DMSPd)ranged from 0.5 to 3.7 nmol/L with higher values in surface water and decreased with depth.Concentrations of particulate DMSP(DMSPp)varied from 0 to 13.6 nmol/L.Concentrations of total DMSP(DMSPt)ranged 2.0-15.2 nmol/L.Their concentrations decreased slightly and reached consistent levels in 200-3000-m depth due probably to heterotrophic bacterial production in marine aphotic and high-pressure environments.An exception occurred around 4000-m depth where their concentrations increased considerably and then decreased in deeper water.This previously unrecognized phenomenon sheds light on the elevated concentrations of DMSP in the abyssal layer that might be affected by the Lower Circumpolar Deep Water(LCPW).Concentrations of CH_(4) in seawater of the Benthic Boundary Layer of the southern Yap Trench were slightly higher than those in the water column at approximate depth,and concentrations of DMSP in seawater of the Benthic Boundary Layer of the southern Yap Trench were not much higher than those in the water column at the approximate depth,indicating that sediment was a weak source of CH_(4) but was not a source of DMSP for seawater in the study area.This study presented clear correlations between CH_(4) and DMSP from sea surface to sea bottom,proving that DMSP might be a potential substrate for CH_(4) not only in oxic surface seawater but also in deep water.展开更多
The composition and concentration of dissolved free amino acid(DFAA)of seawater samples collected in May 2016 from the surface to the hadal zone of the northern region of the Yap Trench were analyzed by pre-column der...The composition and concentration of dissolved free amino acid(DFAA)of seawater samples collected in May 2016 from the surface to the hadal zone of the northern region of the Yap Trench were analyzed by pre-column derivatization of o-phthalaldehyde.Results show that the average concentration of DFAA in the study area was 0.47±0.36μmol/L.In different sampling stations,the concentrations of DFAA with water depth showed complex variation patterns.At the sediment-seawater interface,the concentrations of DFAA in the western side of the trench were obviously higher than that in its eastern side.In the study area,there were no significant correlations between the concentrations of DFAA and the environmental parameters such as concentrations of chlorophyll a(Chl a),dissolved oxygen(DO),pH,and dissolved inorganic nitrogen(DIN),indicating that the concentrations of DFAA in seawater of the trench are affected by many factors,such as photosynthesis,respiration,temperature,pressure,illumination,and circulation.The dominant DFAA are similar in different water layers of sampling stations,including aspartic acid(Asp),glutamic acid(Glu),glycine(Gly),and serine(Ser).The composition of different amino acids,and the relative abundance of acidic,basic,and neutral amino acids might be related to the sources and consumption of various amino acids.Nine pairs of amino acids in the DFAA showed significantly positive relationship by correlation matrix analysis,suggesting that they might share similar biogeochemical processes.The degradation index(DI)of the DFAA in seawater of the Yap Trench could reflect the degradation,source,and freshness of DFAA in the trench to some extents.This is a preliminary study of amino acids from sea surface to hadal zone in the ocean,more works shall be done in different trenches to reveal their biogeochemical characte ristics in extreme marine environme nts.展开更多
基金The National Program on Key Basic Research Project of China under contract No.2015CB755902
文摘Two chiton specimens were collected from sedimentary habitat by China's manned Jiaolong submersible diving to a depth of 6 754 m in the north of the Yap Trench. This is a new locality record for chiton. Both morphological and molecular data support that the two specimens are the same species belonging to the genus Leptochiton. Morphologically, this species strongly resembles L. vanbellei and L. deforgesi. Phylogenetically, it has a close evolutionary relationship with L. vanbellei, L. deforgesi and L. boucheti. This is the third deepest record for deepsea chitons so far.
基金The National Key R&D Program of China under contract No.2017YFC1405502the Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources under contract Nos QNYC1901 and JG2002+1 种基金the National Natural Science Foundation of China under contract No.41976072the“13th Five-Year Plan”for Resources and Environment Projects of the China Ocean Mineral R&D Association(COMRA)under contract No.DY135-G2-1-01。
文摘We present major and trace element data of lava recovered from the northern Yap Trench in the western Pacific and discuss their petrogenesis and tectonic implications within the framework of interactions between the Caroline Ridge and Yap Trench.Rocks were collected from both landward and seaward trench slopes and exhibited geochemical characteristics similar to backarc basin basalt(BABB)and mid-ocean ridge basalt(MORB),including high Fe content,tholeiitic affinity,high TiO_(2) value at a given FeO_(T)/MgO ratio,Ti/V ratio between 20 and50,low Ba/Nb ratio and Th/Nb ratio,and trace element patterns commonly displayed by BABB and MORB,which are distinct from arc lava.These rocks seem to have been generated during mantle upwelling and decompression melting at a spreading center.However,compared with typical forearc lava produced by seafloor spreading in the Mariana forearc region,such as the early Eocene forearc basalts and late Neogene forearc lava in the southernmost Mariana Trench,the Yap Trench lava is derived from a more fertile mantle and feature a more minor subduction component;thus,they cannot be the products of forearc mantle decompression melting.We suggest that the landward slope lava represents backarc basin crust that was overthrust onto the forearc lithosphere during the collision of the Caroline Ridge with the Yap Trench(20–25 Ma),which played a key role in the evolution of the Yap subduction system.Moreover,the seaward slope lava represents the subduction plate crust that accreted onto the deep trench during the collision.This collision event resulted in the cessation of Yap Arc magmatism;thus,the Yap Trench volcanic rocks(<25 Ma)previously suggested to be arc magma products may actually represent the nascent island arc lava with a lower subduction component than in the mature Mariana Arc lava.
基金The Scientific Research Fund of the Second Institute of Oceanography under contract Nos JG2011 and JG1516the National Natural Science Foundation of China under contract No.41606090the National Basic Research Program(973 Program)of China under contract No.2015CB755904.
文摘Sediment collapse and subsequent lateral downslope migration play important roles in shaping the habitats and regulating sedimentary organic carbon(SOC)cycling in hadal trenches.In this study,three sediment cores were collected using a human-occupied vehicle across the axis of the southern Yap Trench(SYT).The total organic carbon(TOC)and total nitrogen(TN)contents,δ13C,radiocarbon ages,specific surface areas,and grain size compositions of sediments from three cores were measured.We explored the influence of the lateral downslope transport on the dispersal of the sediments and established a tentative box model for the SOC balance.In the SYT,the surface TOC content decreased with water depth and was decoupled by the funneling effect of the V-shaped hadal trench.However,the sedimentation(0.0025 cm/a)and SOC accumulation rates(∼0.038 g/(m^(2)·a)(in terms of OC))were approximately 50%higher in the deeper hadal region than in the abyssal region(0.0016 cm/a and∼0.026 g/(m^(2)·a)(in terms of OC),respectively),indicating the occurrence of lateral downslope transport.The fluctuating variations in the prokaryotic abundances and the SOC accumulation rate suggest the periodic input of surficial sediments from the shallow region.The similar average TOC(0.31%–0.38%),TN(0.06%–0.07%)contents,and SOC compositions(terrestrial OC(11%–18%),marine phytoplanktonic OC(45%–53%),and microbial OC(32%–44%))of the three sites indicate that the lateral downslope transport has a significant mixing effect on the SOC composition.The output fluxes of the laterally transported SOC(0.44–0.56 g/(m^(2)·a)(in terms of OC))contributed approximately(47%–73%)of the total SOC input,and this proportion increased with water depth.The results of this study demonstrate the importance of lateral downslope transport in the spatial distribution and development of biomes.
基金Supported by the National Key Research and Development Program of China(No.2022YFC2803803)the National Natural Science Foundation of China(No.42076040)the National Basic Research Program of China(973 Program)(No.2015CB755904)。
文摘2,4,6-Tripyridine-s-triazine(TPTZ)spectrophotometric method was applied to determine the concentrations of dissolved monosaccharides(MCHO),polysaccharides(PCHO),and total carbohydrate(TCHO)in seawater samples collected from sea surface to hadal zone and sediment-seawater interface of the Southern Yap Trench in the Western Pacific Ocean.Results show that the concentrations of MCHO,PCHO,and TCHO ranged from 6.3 to 22.3μmol C/L,1.1 to 25.4μmol C/L,and 12.1 to 44.9μmol C/L,respectively,from the euphotic layer to the hadal zone of the trench.At different sampling stations,the concentrations of MCHO,PCHO,and TCHO in the seawater showed complex vertical variation characteristics,but the overall variation trends were decreasing with water depth.In the Southern Yap Trench,the maximum concentration of MCHO in the seawater appeared in the euphotic layer,and the minimum in the hadal zone.The maximum concentration of PCHO appeared in the euphotic layer,and the minimum in the bathypelagic layer.The water layer where the maxima and minima of the average concentration of TCHO appeared was consistent with that of PCHO.PCHO was the major component of TCHO in the seawater of the Southern Yap Trench.In the seawater from the sediment-seawater interface,the concentrations of MCHO,PCHO,and TCHO ranged from 8.4 to 10.6μmol C/L,3.8 to 5.8μmol C/L,and 12.2 to 15.2μmol C/L,respectively,and MCHO was the major component of TCHO.The key factors affecting the concentration and existing forms of dissolved sugars in the seawater of the Southern Yap Trench included photosynthesis,respiration,polysaccharide hydrolysis,adsorption and desorption of particulate matter,trench“funnel effect”,deep ocean currents,sediment resuspension,and etc.This study provided fundamental data about labile organic matter in abyss and hadal zone of marine environment,which is significant for further understanding of deep-sea organic carbon cycle.
基金Supported by the National Key Research and Development Program of China(No.2022YFC2803803)the National Natural Science Foundation of China(No.42076040)+1 种基金the National Basic Research Program of China(973 Program)(No.2015CB755904)the 111 Project(No.B13030)。
文摘Methane(CH_(4) )and dimethylsulphoniopropionate(DMSP)are major carbon and sulfur sources for bacterioplankton in the ocean.We investigated the characteristics of CH_(4) and DMSP in the southern Yap Trench from sea surface to hadal zone in June 2017.We found that concentrations of CH_(4) varied from 1.5 to 4.5 nmol/L with saturation between 94% and 204% in the euphotic layer.Concentrations of dissolved DMSP(DMSPd)ranged from 0.5 to 3.7 nmol/L with higher values in surface water and decreased with depth.Concentrations of particulate DMSP(DMSPp)varied from 0 to 13.6 nmol/L.Concentrations of total DMSP(DMSPt)ranged 2.0-15.2 nmol/L.Their concentrations decreased slightly and reached consistent levels in 200-3000-m depth due probably to heterotrophic bacterial production in marine aphotic and high-pressure environments.An exception occurred around 4000-m depth where their concentrations increased considerably and then decreased in deeper water.This previously unrecognized phenomenon sheds light on the elevated concentrations of DMSP in the abyssal layer that might be affected by the Lower Circumpolar Deep Water(LCPW).Concentrations of CH_(4) in seawater of the Benthic Boundary Layer of the southern Yap Trench were slightly higher than those in the water column at approximate depth,and concentrations of DMSP in seawater of the Benthic Boundary Layer of the southern Yap Trench were not much higher than those in the water column at the approximate depth,indicating that sediment was a weak source of CH_(4) but was not a source of DMSP for seawater in the study area.This study presented clear correlations between CH_(4) and DMSP from sea surface to sea bottom,proving that DMSP might be a potential substrate for CH_(4) not only in oxic surface seawater but also in deep water.
基金Supported by the Natural National Science Foundation of China(Nos.42076040,41676067)the National Basic Research Program of China(973 Program)(No.2015CB755904)the 111 Project(No.B13030)。
文摘The composition and concentration of dissolved free amino acid(DFAA)of seawater samples collected in May 2016 from the surface to the hadal zone of the northern region of the Yap Trench were analyzed by pre-column derivatization of o-phthalaldehyde.Results show that the average concentration of DFAA in the study area was 0.47±0.36μmol/L.In different sampling stations,the concentrations of DFAA with water depth showed complex variation patterns.At the sediment-seawater interface,the concentrations of DFAA in the western side of the trench were obviously higher than that in its eastern side.In the study area,there were no significant correlations between the concentrations of DFAA and the environmental parameters such as concentrations of chlorophyll a(Chl a),dissolved oxygen(DO),pH,and dissolved inorganic nitrogen(DIN),indicating that the concentrations of DFAA in seawater of the trench are affected by many factors,such as photosynthesis,respiration,temperature,pressure,illumination,and circulation.The dominant DFAA are similar in different water layers of sampling stations,including aspartic acid(Asp),glutamic acid(Glu),glycine(Gly),and serine(Ser).The composition of different amino acids,and the relative abundance of acidic,basic,and neutral amino acids might be related to the sources and consumption of various amino acids.Nine pairs of amino acids in the DFAA showed significantly positive relationship by correlation matrix analysis,suggesting that they might share similar biogeochemical processes.The degradation index(DI)of the DFAA in seawater of the Yap Trench could reflect the degradation,source,and freshness of DFAA in the trench to some extents.This is a preliminary study of amino acids from sea surface to hadal zone in the ocean,more works shall be done in different trenches to reveal their biogeochemical characte ristics in extreme marine environme nts.