In this paper, a quantitative analysis of the opening quality in friction spinning and its main ef-fecting factors is first made. Upon this basis the Box-Hunter’s experimental design method is usedto establish the qu...In this paper, a quantitative analysis of the opening quality in friction spinning and its main ef-fecting factors is first made. Upon this basis the Box-Hunter’s experimental design method is usedto establish the quadratic regressional equations in terms of primary opening technologicalparameters and yarn quality for medium and fine count friction spinning. The results of analysisand discussion show that the proper choice of opening roller speed and its reasonable match withthe yarn count is singificant for ensuring the spinning quality index as well as reducing unevenness,thin and thick places of the yarn.展开更多
The carding cycle affects the sliver quality and the subsequent yarn attributes since it is the main sliver formation step. Processing parameters assume a significant part in affecting the nature of the eventual outco...The carding cycle affects the sliver quality and the subsequent yarn attributes since it is the main sliver formation step. Processing parameters assume a significant part in affecting the nature of the eventual outcome in any sorts of production. In the case of carding machine, a higher production rate makes the operation more sensitive. And this will cause degradation in product quality. So optimization of speed is the talk of the town in spinning field [1]. Extreme higher speed can prompt fiber harm and unnecessary neps generation will corrupt the end result. Again lower speed will lessen the production rate which isn’t reasonable. So we need to discover the ideal speed which will be advantageous to both product quality and production rate. In carding machine, real operational activity happens between flats and cards [1]. From an ordinary perspective, high produce able cards generates higher level of speed. Speed of the cards impacts the carding cycle and the nature of the yarn and in practical point of view, flat’s level of speed is advanced and optimized. The aim of the project was to find out the optimum flat speed in the context of yarn quality. 40 Ne cotton yarns were produced with the slivers manufactured at different flat speeds such as 240, 260, 280, 300 and 320 mm/min. The quality parameters of slivers and yarns were tested and analyzed.展开更多
文摘In this paper, a quantitative analysis of the opening quality in friction spinning and its main ef-fecting factors is first made. Upon this basis the Box-Hunter’s experimental design method is usedto establish the quadratic regressional equations in terms of primary opening technologicalparameters and yarn quality for medium and fine count friction spinning. The results of analysisand discussion show that the proper choice of opening roller speed and its reasonable match withthe yarn count is singificant for ensuring the spinning quality index as well as reducing unevenness,thin and thick places of the yarn.
文摘The carding cycle affects the sliver quality and the subsequent yarn attributes since it is the main sliver formation step. Processing parameters assume a significant part in affecting the nature of the eventual outcome in any sorts of production. In the case of carding machine, a higher production rate makes the operation more sensitive. And this will cause degradation in product quality. So optimization of speed is the talk of the town in spinning field [1]. Extreme higher speed can prompt fiber harm and unnecessary neps generation will corrupt the end result. Again lower speed will lessen the production rate which isn’t reasonable. So we need to discover the ideal speed which will be advantageous to both product quality and production rate. In carding machine, real operational activity happens between flats and cards [1]. From an ordinary perspective, high produce able cards generates higher level of speed. Speed of the cards impacts the carding cycle and the nature of the yarn and in practical point of view, flat’s level of speed is advanced and optimized. The aim of the project was to find out the optimum flat speed in the context of yarn quality. 40 Ne cotton yarns were produced with the slivers manufactured at different flat speeds such as 240, 260, 280, 300 and 320 mm/min. The quality parameters of slivers and yarns were tested and analyzed.