The influence of fiber orientation,flow yaw angle and length-to-thickness ratio on flutter characteristics of angle-ply laminated plates in supersonic flow is studied by finite element approach.The structural model is...The influence of fiber orientation,flow yaw angle and length-to-thickness ratio on flutter characteristics of angle-ply laminated plates in supersonic flow is studied by finite element approach.The structural model is established using the Reissner-Mindlin theory in which the transverse shear deformation is considered.The aerodynamic pressure is evaluated by the quasi-steady first-order piston theory.The equations of motion are formulated based on the principle of virtual work.With the harmonic motion assumption,the flutter boundary is determined by solving a series of complex eigenvalue problems.Numerical study shows that (1) The flutter dynamic pressure and the coalescence of flutter modes depend on fiber orientation,flow yaw angle and length-to-thickness ratio;(2) The laminated plate with all fibers aligned with the flow direction gives the highest flutter dynamic pressure,but a slight yawing of the flow from the fiber orientation results in a sharp decrease of the flutter dynamic pressure;(3) The angle-ply laminated plate with fiber orientation angle equal to flow yaw angle gives high flutter dynamic pressure,but not the maximum flutter dynamic pressure;(4) With the decrease of length-to-thickness ratio,an adverse effect due to mode transition on the flutter dynamic pressure is found.展开更多
基金supported by China Postdoctoral Science Founda-tion (20090451045)
文摘The influence of fiber orientation,flow yaw angle and length-to-thickness ratio on flutter characteristics of angle-ply laminated plates in supersonic flow is studied by finite element approach.The structural model is established using the Reissner-Mindlin theory in which the transverse shear deformation is considered.The aerodynamic pressure is evaluated by the quasi-steady first-order piston theory.The equations of motion are formulated based on the principle of virtual work.With the harmonic motion assumption,the flutter boundary is determined by solving a series of complex eigenvalue problems.Numerical study shows that (1) The flutter dynamic pressure and the coalescence of flutter modes depend on fiber orientation,flow yaw angle and length-to-thickness ratio;(2) The laminated plate with all fibers aligned with the flow direction gives the highest flutter dynamic pressure,but a slight yawing of the flow from the fiber orientation results in a sharp decrease of the flutter dynamic pressure;(3) The angle-ply laminated plate with fiber orientation angle equal to flow yaw angle gives high flutter dynamic pressure,but not the maximum flutter dynamic pressure;(4) With the decrease of length-to-thickness ratio,an adverse effect due to mode transition on the flutter dynamic pressure is found.