期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Direct Yaw Moment Control for Distributed Drive Electric Vehicle Handling Performance Improvement 被引量:29
1
作者 YU Zhuoping LENG Bo +2 位作者 XIONG Lu FENG Yuan SHI Fenmiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期486-497,共12页
For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A... For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved. 展开更多
关键词 direct yaw moment control distributed drive electric vehicle handling performance improvement state feedback control
下载PDF
Research on Direct Yaw Moment Control Strategy of Distributed-Drive Electric Vehicle Based on Joint Observer 被引量:1
2
作者 Quan Min Min Deng +3 位作者 Zichen Zheng Shu Wang Xianyong Gui Haichuan Zhang 《Energy Engineering》 EI 2021年第4期853-874,共22页
Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is... Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is constructed based on model predictive control.Aiming at minimizing the utilization rate of tire adhesion and constrained by the working characteristics of motor system and brake system,a quadratic programming active set was designed to optimize the distribution of additional yaw moments.The road surface adhesion coefficient has a great impact on the reliability of direct yaw moment control,for which joint observer of vehicle state parameters and road surface parameters is designed by using unscented Kalman filter algorithm,which correlates vehicle state observer and road surface parameter observer to form closed-loop feedback correction.The results show that compared to the“feedforward+feedback”control,the vehicle’s error of yaw rate and sideslip angle by the model predictive control is smaller,which can improve the vehicle stability effectively.In addition,according to the results of the docking road simulation test,the joint observer of vehicle state and road surface parameters can improve the adaptability of the vehicle stability controller to the road conditions with variable adhesion coefficients. 展开更多
关键词 Vehicle stability control distributed drive direct yaw moment control joint observer
下载PDF
A Novel Pre-control Method of Vehicle Dynamics Stability Based on Critical Stable Velocity during Transient Steering Maneuvering 被引量:9
3
作者 CHEN Jie SONG Jian +3 位作者 LI Liang RAN Xu JIA Gang WU Kaihui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期475-485,共11页
The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lat... The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lateral stability of the vehicle, however, the effect of DYC can be improved a step further by applying the control of vehicle longitudinal velocity. In this paper, the relationship between the vehicle longitudinal velocity and lateral stability is studied, and the simulation results show that a decrease of 5 km/h of longitudinal velocity at a particular situation can bring 100° increasing of stable steering upper limit. A critical stable velocity considering the effect of steering and yaw rate measurement is defined to evaluate the risk of losing steer-ability or stability. A novel velocity pre-control method is proposed by using a hierarchical pre-control logic and is integrated with the traditional DYC system. The control algorithm is verified through a hardware in-the-loop simulation system. Double lane change(DLC) test results on both high friction coefficient(μ) and low μ roads show that by using the pre-control method, the steering effort in DLC test can be reduced by 38% and 51% and the peak value of brake pressure control can be reduced by 20% and 12% respectively on high μ and low μ roads, the lateral stability is also improved. This research proposes a novel DYC system with lighter control effort and better control effect. 展开更多
关键词 vehicle dynamics direct yaw moment control critical stable velocity pre-control
下载PDF
An experimental investigation on static directiona stability
4
作者 Wen Jing Wang Yankui Deng Xueying 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1527-1540,共14页
A generic aircraft usually loses its static directional stability at moderate angle of attack(typically 20–30°). In this research, wind tunnel studies were performed using an aircraft model with moderate swept w... A generic aircraft usually loses its static directional stability at moderate angle of attack(typically 20–30°). In this research, wind tunnel studies were performed using an aircraft model with moderate swept wing and a conventional vertical tail. The purpose of this study was to investigate flow mechanisms responsible for static directional stability. Measurements of force, surface pressure and spatial flow field were carried out for angles of attack from 0° to 46° and sideslip angles from-8° to 8°. Results of the wind tunnel experiments show that the vertical tail is the main contributor to static directional stability, while the fuselage is the main contributor to static directional instability of the model. In the sideslip attitude for moderate angles of attack, the fuselage vortex and the wing vortex merged together and changed asymmetrically as angle of attack increased on the windward side and leeward side of the vertical tail. The separated asymmetrical vortex flow around the vertical tail is the main reason for reduction in the static directional stability. Compared with the wing vortices, the fuselage vortices are more concentrated and closer to the vertical tail, so the yawing moment of vertical tail is more unstable than that when the wings are absent. On the other hand,the attached asymmetrical flow over the fuselage in sideslip leads to the static directional instability of the fuselage being exacerbated. It is mainly due to the predominant model contour blockage effect on the windward side flow over the model in sideslip, which is strongly affected by angle of attack. 展开更多
关键词 Asymmetric flow Directional stability Flow mechanisms SIDESLIP yawing moment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部