Rare earth ion-doped Y_(3)Al_(5)O_(12)(YAG)-based transparent ceramics have been used as important laser gain media for a long time,yet the doping concentration of active ions is limited due to concentration quenching...Rare earth ion-doped Y_(3)Al_(5)O_(12)(YAG)-based transparent ceramics have been used as important laser gain media for a long time,yet the doping concentration of active ions is limited due to concentration quenching,wherein the inflexion concentration quenching of Nd^(3+)is recognized as 1.0 at%.In this work,YAG-Al_(2)O_(3) nanocrystalline transparent ceramics with a concentration of Nd^(3+)(O-5.0 at%)were fabricated via amorphous crystallization,and the crystal structure evolution,morphology,and optical properties were systematically investigated by differential scanning calorimetry(DSC),X-ray powder diffraction(XRD),transmission electron microscopy(TEM),magnetic resonation(MAS),nuclear magnetic resonation(NMR),and fluorescence spectroscopy.The doping of Nd^(3+)can promote the transition of Al[5]and Al[6]to Al[14],indicating improvements in the ability of the amorphous material to form Nd^(3+):Y_(2)O_(3)-Al_(2)O_(3) vitrified beads,and 1.5 at%Nd^(3+):YAG-Al_(2)O_(3) nanocrystalline transparent ceramics can be obtained by crystallization at 1050℃ with a matrix composed of YAG and concomitant δ-Al_(2)O_(3) and θ-Al_(2)O_(3).The nanocrystalline transparent ceramics show an internal transmitance of 89.56%at 1064 nm,and the strongest emission peak corresponds to the energy transfer from 4F_(3/2) to 4l_(11/2) of Nd^(3+)with a fluorescence lifetime of 231μs when pumped by an 808 nm laser.Specifically,spectral broadening begins to occur,indicating the onset of concentration quenching,when the concentration of Nd^(3+)exceeds 1.5 at%,substantially higher than the 1.0 at% observed in YAG ceramics.YAG-Al_(2)O_(3) nanocrystalline transparent ceramics obtained by amorphous crystalization can be utilized as the matrix to increase the inflexion point of doping concentration quenching of Nd^(3+),and this material may have great potential as a laser gain medium.展开更多
This study presented the luminescence properties of Nd^3+/Yb^3+/Ho^3+ dopant ions inside a host based on Ga_2O_3-GeO_2-Li_2O(GGL) glass. The measured differential scanning calorimetry result showed that GGL glass...This study presented the luminescence properties of Nd^3+/Yb^3+/Ho^3+ dopant ions inside a host based on Ga_2O_3-GeO_2-Li_2O(GGL) glass. The measured differential scanning calorimetry result showed that GGL glass exhibited excellent stability against devitrification with ?T=135 oC. Obvious 543 and 657 nm emissions were observed in Nd^3+/Ho^3+-codoped sample. The incorporation of Yb^3+ into Nd^3+/Ho^3+-codoped glass system had resulted in enhanced upconversion emission intensity under the excitation of 808 nm and/or 980 nm laser diode(LD). The possible mechanisms and related discussions on this phenomenon were presented. It was noted that the presence of Yb^3+ yielded an enhancement about 7 and 11 times in the 543 and 657 nm emission intensities respectively under 808 nm excitation due to the energy transfer from Nd^3+ to Ho^3+ via Yb^3+ ion. Here Yb^3+ played a major role as a bridging ion. While enhanced 543 and 657 nm emission intensities under the excitation of 980 nm LD originated from the sensitization effect of Yb^3+. Our results showed that Nd^3+/Ho^3+/Yb^3+ triply doped GGL glass might be a promising candidate for the development of visible-laser materials.展开更多
Er^(3+)-Tm^(3+)-Pr^(3+)triply-doped graphene-glass-graphene(GGG) nanosheet waveguide amplifier, which is a promising candidate for integrated photonic devices, is modelled and numerically analyzed. The designed wavegu...Er^(3+)-Tm^(3+)-Pr^(3+)triply-doped graphene-glass-graphene(GGG) nanosheet waveguide amplifier, which is a promising candidate for integrated photonic devices, is modelled and numerically analyzed. The designed waveguide is composed of a triply-doped tellurite glass core. The core is sandwiched between two graphene layers.The rate and power propagation equations of a heterogeneous multi-level laser medium are set up and solved numerically to study the effects of waveguide length and active ion concentrations on amplifier performance at five different input signal wavelengths(1.310, 1.470, 1.530, 1.600 and 1.650 μm). The analytical results show that rareearth ion dopant concentrations at an order of 10^(26) ion/m^3, waveguide length at 0.1 m and pump power at 100 m W can amplify 1.530 and 1.600 μm input signals with 1 μW power up to approximately 20.0 and 24.0 dB respectively.Finite-difference time-domain(FDTD) simulation results show that mode field radius of GGG waveguide is smaller than that of silicon waveguide. Consequently, GGG waveguide with the same pump and signal power and the same gain-medium length can produce higher gain than silicon waveguide.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.51972018).
文摘Rare earth ion-doped Y_(3)Al_(5)O_(12)(YAG)-based transparent ceramics have been used as important laser gain media for a long time,yet the doping concentration of active ions is limited due to concentration quenching,wherein the inflexion concentration quenching of Nd^(3+)is recognized as 1.0 at%.In this work,YAG-Al_(2)O_(3) nanocrystalline transparent ceramics with a concentration of Nd^(3+)(O-5.0 at%)were fabricated via amorphous crystallization,and the crystal structure evolution,morphology,and optical properties were systematically investigated by differential scanning calorimetry(DSC),X-ray powder diffraction(XRD),transmission electron microscopy(TEM),magnetic resonation(MAS),nuclear magnetic resonation(NMR),and fluorescence spectroscopy.The doping of Nd^(3+)can promote the transition of Al[5]and Al[6]to Al[14],indicating improvements in the ability of the amorphous material to form Nd^(3+):Y_(2)O_(3)-Al_(2)O_(3) vitrified beads,and 1.5 at%Nd^(3+):YAG-Al_(2)O_(3) nanocrystalline transparent ceramics can be obtained by crystallization at 1050℃ with a matrix composed of YAG and concomitant δ-Al_(2)O_(3) and θ-Al_(2)O_(3).The nanocrystalline transparent ceramics show an internal transmitance of 89.56%at 1064 nm,and the strongest emission peak corresponds to the energy transfer from 4F_(3/2) to 4l_(11/2) of Nd^(3+)with a fluorescence lifetime of 231μs when pumped by an 808 nm laser.Specifically,spectral broadening begins to occur,indicating the onset of concentration quenching,when the concentration of Nd^(3+)exceeds 1.5 at%,substantially higher than the 1.0 at% observed in YAG ceramics.YAG-Al_(2)O_(3) nanocrystalline transparent ceramics obtained by amorphous crystalization can be utilized as the matrix to increase the inflexion point of doping concentration quenching of Nd^(3+),and this material may have great potential as a laser gain medium.
基金Project supported by the National Natural Science Foundation of China(51002070)Foundation of He’nan Educational Committee(14A430034,16A430040)+1 种基金Funding Scheme for Young Teachers of Higher School in Henan Province(2012GGJS-192)the Science and Technology Program of Luoyang City(1401051A)
文摘This study presented the luminescence properties of Nd^3+/Yb^3+/Ho^3+ dopant ions inside a host based on Ga_2O_3-GeO_2-Li_2O(GGL) glass. The measured differential scanning calorimetry result showed that GGL glass exhibited excellent stability against devitrification with ?T=135 oC. Obvious 543 and 657 nm emissions were observed in Nd^3+/Ho^3+-codoped sample. The incorporation of Yb^3+ into Nd^3+/Ho^3+-codoped glass system had resulted in enhanced upconversion emission intensity under the excitation of 808 nm and/or 980 nm laser diode(LD). The possible mechanisms and related discussions on this phenomenon were presented. It was noted that the presence of Yb^3+ yielded an enhancement about 7 and 11 times in the 543 and 657 nm emission intensities respectively under 808 nm excitation due to the energy transfer from Nd^3+ to Ho^3+ via Yb^3+ ion. Here Yb^3+ played a major role as a bridging ion. While enhanced 543 and 657 nm emission intensities under the excitation of 980 nm LD originated from the sensitization effect of Yb^3+. Our results showed that Nd^3+/Ho^3+/Yb^3+ triply doped GGL glass might be a promising candidate for the development of visible-laser materials.
基金the National Natural Science Foundation of China(Nos.60377023 and 60672017)the Program for New Century Excellent Talents in Universities(NCET)the Shanghai Optical Science and Technology Project(No.05DZ22009)
文摘Er^(3+)-Tm^(3+)-Pr^(3+)triply-doped graphene-glass-graphene(GGG) nanosheet waveguide amplifier, which is a promising candidate for integrated photonic devices, is modelled and numerically analyzed. The designed waveguide is composed of a triply-doped tellurite glass core. The core is sandwiched between two graphene layers.The rate and power propagation equations of a heterogeneous multi-level laser medium are set up and solved numerically to study the effects of waveguide length and active ion concentrations on amplifier performance at five different input signal wavelengths(1.310, 1.470, 1.530, 1.600 and 1.650 μm). The analytical results show that rareearth ion dopant concentrations at an order of 10^(26) ion/m^3, waveguide length at 0.1 m and pump power at 100 m W can amplify 1.530 and 1.600 μm input signals with 1 μW power up to approximately 20.0 and 24.0 dB respectively.Finite-difference time-domain(FDTD) simulation results show that mode field radius of GGG waveguide is smaller than that of silicon waveguide. Consequently, GGG waveguide with the same pump and signal power and the same gain-medium length can produce higher gain than silicon waveguide.