Yb:Sc2O3 transparent ceramics are fabricated by a conventional ceramic process and sintering in H2 atmosphere. The room-temperature spectroscopic properties are investigated, and the Raman spectrum shows an obvious v...Yb:Sc2O3 transparent ceramics are fabricated by a conventional ceramic process and sintering in H2 atmosphere. The room-temperature spectroscopic properties are investigated, and the Raman spectrum shows an obvious vibration characteristic band centred at 415 cm-1. There are three broad absorption bands around 891, 937, and 971 nm, respectively. The strongest emission peak is centred at 1.04 μm with a broad bandwidth (11 nm) and an emission cross-section of 1.8×10^-20 cm^2. The gain coefficient implies a possible laser ability in a range from 990 nm to 1425 nm. The energy-level structure shows that Yb:Sc2O3 ceramics have large Stark splitting at the ground state level due to their strong crystal field. All the results show that Yb:Sc2O3 transparent ceramics are a promising material for short pulse lasers.展开更多
Highly transparent Yb,Ho doped(YLa)2O3 ceramic was fabricated by conventional ceramic processing with nanopowders.The absorption and emission spectra of the ceramic was investigated.The energy transfer mechanism bet...Highly transparent Yb,Ho doped(YLa)2O3 ceramic was fabricated by conventional ceramic processing with nanopowders.The absorption and emission spectra of the ceramic was investigated.The energy transfer mechanism between Yb3+ and Ho3+ was also discussed.The strong emission band around 2 μm indicated that the Yb-Ho:(Y 0.90 La 0.10)2O3 transparent ceramic is a promising gain medium for the generation of 2 μm laser emissions.The laser operation of Yb-Ho co-doped(YLa)2O3 ceramic at 2.1 μm is first reported.展开更多
Yb:Sc2O3 transparent ceramics were fabricated by solid-state reaction and vacuum sintering method. CaO was added as sintering aids by a high energy ball milling. Transparent nearly-fully dense samples were obtained a...Yb:Sc2O3 transparent ceramics were fabricated by solid-state reaction and vacuum sintering method. CaO was added as sintering aids by a high energy ball milling. Transparent nearly-fully dense samples were obtained after 1840℃ sintefing. Using transmitted-light microscope we get the grain sizes are more than 100μm. Using spectrophotometer we get the absorption coefficient centered at 975 nm was 2.65 cm-1. The phosphorescence spectra showed that the line-widths (FWHM) at 975 and 1041 nm were about 4 and 10 nm and the lifetime of Yb ions in Sc2O3 transparent ceramics was about 883 μs. According to the absorption and fluorescence band centers of Yb:Sc2O3 transparent ceramics, the level scheme of Yb3+ ions in Sc2O3 ceramics could be gotten.展开更多
The Yb:Lu_(2)O_(3)precursor made up of spherical particles was synthesized through the co-precipitation method in the water/ethanol solvent.The 5 at% Yb:Lu_(2)O_(3)powder is in the cubic phase after calcination at 110...The Yb:Lu_(2)O_(3)precursor made up of spherical particles was synthesized through the co-precipitation method in the water/ethanol solvent.The 5 at% Yb:Lu_(2)O_(3)powder is in the cubic phase after calcination at 1100℃ for 4 h.The powder also consists of spherical nanoparticles with the average particle and grain sizes of 96 and 49 nm,respectively.The average grain size of the pre-sintered ceramic sample is 526 nm and that of the sample by hot isostatic pressing grows to 612 nm.The 1.0 mm-thick sample has an in-line transmittance of 81.6%(theoretical value of 82.2%)at 1100 nm.The largest absorption cross-section at 976 nm is 0.96×1^(0-20)cm^(2) with the emission cross-section at 1033 nm of 0.92×10^(-20)cm^(2) and the gain cross sections are calculated with the smallest population inversion parameter β of 0.059.The highest slope efficiency of 68.7% with the optical efficiency of 65.1% is obtained at 1033.3 nm in quasi-continuous wave(QCW)pumping.In the case of continuous wave(CW)pumping,the highest slope efficiency is 61.0% with the optical efficiency of 54.1%.The obtained laser performance indicates that Yb:Lu_(2)O_(3)ceramics have excellent resistance to thermal load stresses,which shows great potential in high-power solid-state laser applications.展开更多
基金supported by the Key Basic Research Project of Science and Technology Commission of Shanghai, China (Grant No. 09JC1406500)
文摘Yb:Sc2O3 transparent ceramics are fabricated by a conventional ceramic process and sintering in H2 atmosphere. The room-temperature spectroscopic properties are investigated, and the Raman spectrum shows an obvious vibration characteristic band centred at 415 cm-1. There are three broad absorption bands around 891, 937, and 971 nm, respectively. The strongest emission peak is centred at 1.04 μm with a broad bandwidth (11 nm) and an emission cross-section of 1.8×10^-20 cm^2. The gain coefficient implies a possible laser ability in a range from 990 nm to 1425 nm. The energy-level structure shows that Yb:Sc2O3 ceramics have large Stark splitting at the ground state level due to their strong crystal field. All the results show that Yb:Sc2O3 transparent ceramics are a promising material for short pulse lasers.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60578041)the Sciences and Technology Commission Foundation of Shanghai,China (Grant No. 08520707300)+1 种基金the Key Basic Research Project of Science and Technology Commission of Shanghai,China (Grant No. 09JC1406500)the Graduate Student Innovation Fund of Shanghai University,China (Grant No. SHUCX120058)
文摘Highly transparent Yb,Ho doped(YLa)2O3 ceramic was fabricated by conventional ceramic processing with nanopowders.The absorption and emission spectra of the ceramic was investigated.The energy transfer mechanism between Yb3+ and Ho3+ was also discussed.The strong emission band around 2 μm indicated that the Yb-Ho:(Y 0.90 La 0.10)2O3 transparent ceramic is a promising gain medium for the generation of 2 μm laser emissions.The laser operation of Yb-Ho co-doped(YLa)2O3 ceramic at 2.1 μm is first reported.
基金supported by Major Program of the National Natural Science Foundation of China (50990300, 51102257)National Science Foundation for Post-doctoral Scientists of China (200801207)Natural Science Foundation of Shanghai, China (09ZR1435600, 10JC1416000)
文摘Yb:Sc2O3 transparent ceramics were fabricated by solid-state reaction and vacuum sintering method. CaO was added as sintering aids by a high energy ball milling. Transparent nearly-fully dense samples were obtained after 1840℃ sintefing. Using transmitted-light microscope we get the grain sizes are more than 100μm. Using spectrophotometer we get the absorption coefficient centered at 975 nm was 2.65 cm-1. The phosphorescence spectra showed that the line-widths (FWHM) at 975 and 1041 nm were about 4 and 10 nm and the lifetime of Yb ions in Sc2O3 transparent ceramics was about 883 μs. According to the absorption and fluorescence band centers of Yb:Sc2O3 transparent ceramics, the level scheme of Yb3+ ions in Sc2O3 ceramics could be gotten.
基金supported by the National Key R&D Program of China(Grant No.2017YFB0310500)the National Natural Science Foundation of China(Grant No.61575212)the Key Research Project of the Frontier Science of the Chinese Academy of Sciences(No.QYZDB-SSW-JSC022).
文摘The Yb:Lu_(2)O_(3)precursor made up of spherical particles was synthesized through the co-precipitation method in the water/ethanol solvent.The 5 at% Yb:Lu_(2)O_(3)powder is in the cubic phase after calcination at 1100℃ for 4 h.The powder also consists of spherical nanoparticles with the average particle and grain sizes of 96 and 49 nm,respectively.The average grain size of the pre-sintered ceramic sample is 526 nm and that of the sample by hot isostatic pressing grows to 612 nm.The 1.0 mm-thick sample has an in-line transmittance of 81.6%(theoretical value of 82.2%)at 1100 nm.The largest absorption cross-section at 976 nm is 0.96×1^(0-20)cm^(2) with the emission cross-section at 1033 nm of 0.92×10^(-20)cm^(2) and the gain cross sections are calculated with the smallest population inversion parameter β of 0.059.The highest slope efficiency of 68.7% with the optical efficiency of 65.1% is obtained at 1033.3 nm in quasi-continuous wave(QCW)pumping.In the case of continuous wave(CW)pumping,the highest slope efficiency is 61.0% with the optical efficiency of 54.1%.The obtained laser performance indicates that Yb:Lu_(2)O_(3)ceramics have excellent resistance to thermal load stresses,which shows great potential in high-power solid-state laser applications.