Using Fe doped titania powders as the precursor, Fe doped TiO2 nanotubes with small diameter of 10nm were obtained by hydrothermal method. The doped titania powders have two different crystalline phases, anatase and r...Using Fe doped titania powders as the precursor, Fe doped TiO2 nanotubes with small diameter of 10nm were obtained by hydrothermal method. The doped titania powders have two different crystalline phases, anatase and rutile of which the average particle diameters are 30.3nm and 41.7nm, receptively. The products were characterized by TEM, XRD and EDS. The results showed that Fe doped TiO2 nanotubes of 200nm in length could be obtained from Fe doped rutile powder, and have higher yields. The formation mechanism of long titania nanotubes was suggested in the light of the relative stability of crystalline phase.展开更多
A visible-light-active photocatalyst was prepared by calcination of the hydrolysis product of tetrabutyl titanate with ammonia as precipitant. The photocatalyst was characterized by X-ray diffraction (XRD), UV-Vis dif...A visible-light-active photocatalyst was prepared by calcination of the hydrolysis product of tetrabutyl titanate with ammonia as precipitant. The photocatalyst was characterized by X-ray diffraction (XRD), UV-Vis diffuse reflection spectra (DRS), thermal gravimetric-differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). The color of the photocatalyst was yellow and could absorb light wavelength under 550 nm as measured by DRS. The catalyst calcined at higher temperature will give lower absorbance for visible light. Structures of the sample were characterized mainly to be anatase by XRD except for the sample calcined at 700 ℃ which gave mixtures of anatase and rutile. TG-DTA results showed that temperature for anatase formation was 415 ℃. XPS results showed that doped-nitrogen was presented in the sample, they are important to show visible-light absorbency. The photocatalytic activities were evaluated using methyl orange and phenol as model pollutants, the results showed that over 90% of phenol could be degraded under visible light using N/TiO2 as the catalyst after 4 hours reaction. Almost the same activity was found for the TiO2 photocatalyst calcined at different temperature under sunlight but activities were different when the treatment was under UV light.展开更多
文摘Using Fe doped titania powders as the precursor, Fe doped TiO2 nanotubes with small diameter of 10nm were obtained by hydrothermal method. The doped titania powders have two different crystalline phases, anatase and rutile of which the average particle diameters are 30.3nm and 41.7nm, receptively. The products were characterized by TEM, XRD and EDS. The results showed that Fe doped TiO2 nanotubes of 200nm in length could be obtained from Fe doped rutile powder, and have higher yields. The formation mechanism of long titania nanotubes was suggested in the light of the relative stability of crystalline phase.
文摘A visible-light-active photocatalyst was prepared by calcination of the hydrolysis product of tetrabutyl titanate with ammonia as precipitant. The photocatalyst was characterized by X-ray diffraction (XRD), UV-Vis diffuse reflection spectra (DRS), thermal gravimetric-differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). The color of the photocatalyst was yellow and could absorb light wavelength under 550 nm as measured by DRS. The catalyst calcined at higher temperature will give lower absorbance for visible light. Structures of the sample were characterized mainly to be anatase by XRD except for the sample calcined at 700 ℃ which gave mixtures of anatase and rutile. TG-DTA results showed that temperature for anatase formation was 415 ℃. XPS results showed that doped-nitrogen was presented in the sample, they are important to show visible-light absorbency. The photocatalytic activities were evaluated using methyl orange and phenol as model pollutants, the results showed that over 90% of phenol could be degraded under visible light using N/TiO2 as the catalyst after 4 hours reaction. Almost the same activity was found for the TiO2 photocatalyst calcined at different temperature under sunlight but activities were different when the treatment was under UV light.