Ce3+, Yb3+ co-doped Y3Al5O12 films were prepared by pulse laser deposition. X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence spectra were used to characterize their structural and luminescent p...Ce3+, Yb3+ co-doped Y3Al5O12 films were prepared by pulse laser deposition. X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence spectra were used to characterize their structural and luminescent properties. Near-infrared quantum cutting from the films was observed via a cooperative energy transfer from Ce3+ to Yb3+ ions. The high quantum efficiency of the films implies that Ce3+,Yb3+ co-doped Y3A15O12 films have potential application by tuning the solar spectrum to enhance the efficiency of silicon solar cells.展开更多
Single-doped(Ce3+,Tb3+), co-doped(Ce3+-Tb3+, Ce3+-Yb3+, Tb3+-Yb3+) and tri-doped(Ce3+-Tb3+-Yb3+) Y3Al5O12 phosphors were synthesized by a solid-state reaction method. The XRD, excitation and emission ...Single-doped(Ce3+,Tb3+), co-doped(Ce3+-Tb3+, Ce3+-Yb3+, Tb3+-Yb3+) and tri-doped(Ce3+-Tb3+-Yb3+) Y3Al5O12 phosphors were synthesized by a solid-state reaction method. The XRD, excitation and emission spectra and the fluorescence lifetime of the samples were measured. The energy transfer mechanism was also investigated. The results showed that the energy transfer efficiency from Tb3+ to Ce3+ was 51% and the energy transfer efficiency from Ce3+ to Yb3+ was 63.1%. Concomitantly, both were more efficient than that from Ce3+ to Tb3+(7%) and from Tb3+ to Yb3+(10.2%). Also, the Yb3+ ions received energy mainly from Ce3+ ions in Ce3+-Tb3+-Yb3+ tri-doped Y3Al5O12 phosphors. Among these materials, Ce3+-Yb3+ co-doped YAG phosphors are a better choice than others as a down-conversion material due to their higher energy transfer efficiency.展开更多
An overview of the Czech national R&D project HiLASE(High average power pulsed laser) is presented. The project focuses on the development of advanced high repetition rate, diode pumped solid state laser(DPSSL) sy...An overview of the Czech national R&D project HiLASE(High average power pulsed laser) is presented. The project focuses on the development of advanced high repetition rate, diode pumped solid state laser(DPSSL) systems with energies in the range from mJ to 100 J and repetition rates in the range from 10 Hz to 100 kHz. Some applications of these lasers in research and hi-tech industry are also presented.展开更多
基金Funded by the China Postdoctoral Science Foundation(No.2012M511801)the National Natural Science Foundation of China(Nos.11474104 and 51372092)
文摘Ce3+, Yb3+ co-doped Y3Al5O12 films were prepared by pulse laser deposition. X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence spectra were used to characterize their structural and luminescent properties. Near-infrared quantum cutting from the films was observed via a cooperative energy transfer from Ce3+ to Yb3+ ions. The high quantum efficiency of the films implies that Ce3+,Yb3+ co-doped Y3A15O12 films have potential application by tuning the solar spectrum to enhance the efficiency of silicon solar cells.
基金supported by the Natural Science Foundation of Jiangsu(BK2011033)Jiangsu Planned Projects for Postdoctoral Research Funds(1501042B)Primary Research&Development Plan of Jiangsu Province(BE2016175)
文摘Single-doped(Ce3+,Tb3+), co-doped(Ce3+-Tb3+, Ce3+-Yb3+, Tb3+-Yb3+) and tri-doped(Ce3+-Tb3+-Yb3+) Y3Al5O12 phosphors were synthesized by a solid-state reaction method. The XRD, excitation and emission spectra and the fluorescence lifetime of the samples were measured. The energy transfer mechanism was also investigated. The results showed that the energy transfer efficiency from Tb3+ to Ce3+ was 51% and the energy transfer efficiency from Ce3+ to Yb3+ was 63.1%. Concomitantly, both were more efficient than that from Ce3+ to Tb3+(7%) and from Tb3+ to Yb3+(10.2%). Also, the Yb3+ ions received energy mainly from Ce3+ ions in Ce3+-Tb3+-Yb3+ tri-doped Y3Al5O12 phosphors. Among these materials, Ce3+-Yb3+ co-doped YAG phosphors are a better choice than others as a down-conversion material due to their higher energy transfer efficiency.
基金the support of the Czech Republic’s Ministry of Education, Youth and Sports to the HiLASE (CZ.1.05/2.1.00/01.0027)DPSSLasers (CZ.1.07/2.3.00/ 20.0143)+2 种基金Postdok (CZ.1.07/2.3.00/30.0057) projectsco-financed by the European Regional Development Fundpartially supported by grant RVO 68407700
文摘An overview of the Czech national R&D project HiLASE(High average power pulsed laser) is presented. The project focuses on the development of advanced high repetition rate, diode pumped solid state laser(DPSSL) systems with energies in the range from mJ to 100 J and repetition rates in the range from 10 Hz to 100 kHz. Some applications of these lasers in research and hi-tech industry are also presented.