Microbial cell surface display technology is a recombinant technology to express target proteins on the cell membrane,which can be used to redesign the cell surface with functional proteins and peptides.Bacterial and ...Microbial cell surface display technology is a recombinant technology to express target proteins on the cell membrane,which can be used to redesign the cell surface with functional proteins and peptides.Bacterial and yeast surface display systems are the most common cell surface display systems of prokaryotic and eukaryotic proteins,that are widely applied as the core elements in the field of biosensors due to their advantages,including enhanced stability,high yield,good safety,expression of larger and more complex proteins.To further promote the performance of biosensors,the biomineralized microbial surface display technology was proposed.This review summarized the different microbial surface display systems and the biomineralized surface display systems,where the mechanisms of surface display and biomineralization were introduced.Then we described the recent progress of their applications on biosensors for different types of detection targets.Finally,the outlooks and tendencies were discussed and forecasted with the expectation to provide some general functions and enlightenments to this aspect of research.展开更多
The purpose of this study was to assess the potential application of cell surface display in Candida tropicalis.Surface display gene cassettes were constructed using five anchoring proteins from Saccharomyces cerevisi...The purpose of this study was to assess the potential application of cell surface display in Candida tropicalis.Surface display gene cassettes were constructed using five anchoring proteins from Saccharomyces cerevisiae,three of which[(suppression of exponential defect protein,SED1),(cell wall protein 2,CWP2)and(delayed anaerobic protein 4,DAN4)]were reported to show higher activity of heterologous proteins thanα-agglutinin(AGα1).The performance of yeast-enhanced green fluorescent protein(yeGFP)was evaluated using laser scanning confocal microscopy and flow cytometry.The results showed that the three anchoring regions(SED1,CWP2 and AGα1)successfully displayed yeGFP on the cell wall.To investigate the effect of the three anchoring proteins on the surface display of Rhizopus oryzaeα-amylase(ROA1)and Aspergillus aculeatusβ-glucosidase(BGL1)in C.tropicalis,we constructed surface display gene cassettes for ROA1 and BGL1,respectively.The strains containing the anchoring proteins SED1 and CWP2 showed higher activity of ROA1 and BGL1 than the strains containing the anchoring protein AGα1.The highest ROA1 and BGL1 activities of strains with SED1 were 6.37 U/g CDW and 7.93 U/g CDW,respectively,which were sixfold and eightfold higher than those of strain with AGα1.In addition,we also optimized signal peptides.The results indicated that signal peptides have an impact on enzyme activity.展开更多
The enzymatic degradation of azo dyes is a promising alternative to ineffective chemical and physical remediation methods.Lignin peroxidase(LiP)from Phanerochaete chrysosporium is a hemecontaining lignin-degrading oxi...The enzymatic degradation of azo dyes is a promising alternative to ineffective chemical and physical remediation methods.Lignin peroxidase(LiP)from Phanerochaete chrysosporium is a hemecontaining lignin-degrading oxidoreductase that catalyzes the peroxide-dependent oxidation of diverse molecules,including industrial dyes.This enzyme is therefore ideal as a starting point for protein engineering.Accordingly,we subjected two positions(165 and 264)in the environment of the catalytic Trp171 residue to saturation mutagenesis,and the resulting library of 104 independent clones was expressed on the surface of yeast cells.This yeast display library was used for the selection of variants with the ability to break down structurally-distinct azo dyes more efficiently.We identified mutants with up to 10-fold greater affinity than wild-type LiP for three diverse azo dyes(Evans blue,amido black 10B and Guinea green)and up to 13-fold higher catalytic activity.Additionally,cell wall fragments displaying mutant LiP enzymes were prepared by toluene-induced cell lysis,achieving significant increases in both enzyme activity and stability compared to a whole-cell biocatalyst.LiPcoated cell wall fragments retained their initial dye degradation activity after 10 reaction cycles each lasting 8 h.The best-performing mutants removed up to 2.5-fold more of each dye than the wild-type LiP in multiple reaction cycles.展开更多
Surface display is effectively utilized to construct a whole-cell biocatalyst.Codon optimization has been proven to be effective in maximizing production of heterologous proteins in yeast.Here,the cDNA sequence of Rhi...Surface display is effectively utilized to construct a whole-cell biocatalyst.Codon optimization has been proven to be effective in maximizing production of heterologous proteins in yeast.Here,the cDNA sequence of Rhizopus oryzae lipase (ROL) was optimized and synthesized according to the codon bias of Saccharomyces cerevisiae,and based on the Saccharomyces cerevisiae cell surface display system with α-agglutinin as an anchor,recombinant yeast displaying fully codon-optimized ROL with high activity was successfully constructed.Compared with the wild-type ROL-displaying yeast,the activity of the codon-optimized ROL yeast whole-cell biocatalyst (25 U/g dried cells) was 12.8-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate (pNPP) as the substrate.To our knowledge,this was the first attempt to combine the techniques of yeast surface display and codon optimization for whole-cell biocatalyst construction.Consequently,the yeast whole-cell ROL biocatalyst was constructed with high activity.The optimum pH and temperature for the yeast whole-cell ROL biocatalyst were pH 7.0 and 40 °C.Furthermore,this whole-cell biocatalyst was applied to the hydrolysis of tributyrin and the resulted conversion of butyric acid reached 96.91% after 144 h.展开更多
基金the National Natural Science Foundation of China(Grant No.21705087)Youth Innovation Team Project for Talent Introduction and Cultivation in Universities of Shandong Province(096-1622002)+2 种基金Research Foundation for Distinguished Scholars of Qingdao Agricultural University(663-1117015)the Postgraduate Innovation Program of Qingdao Agricultural University(QNYCX21069)the National Innovation Training Program for College Students(No.202210435030).
文摘Microbial cell surface display technology is a recombinant technology to express target proteins on the cell membrane,which can be used to redesign the cell surface with functional proteins and peptides.Bacterial and yeast surface display systems are the most common cell surface display systems of prokaryotic and eukaryotic proteins,that are widely applied as the core elements in the field of biosensors due to their advantages,including enhanced stability,high yield,good safety,expression of larger and more complex proteins.To further promote the performance of biosensors,the biomineralized microbial surface display technology was proposed.This review summarized the different microbial surface display systems and the biomineralized surface display systems,where the mechanisms of surface display and biomineralization were introduced.Then we described the recent progress of their applications on biosensors for different types of detection targets.Finally,the outlooks and tendencies were discussed and forecasted with the expectation to provide some general functions and enlightenments to this aspect of research.
基金supported by the 111 Project(No.111-2-06)National Natural Science Foundation of China(32001064)+2 种基金Key Research and Development Program of China(2021YFC2100102-03)China Postdoctoral Science Foundation(2020M671331)Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.KYCX20-1807).
文摘The purpose of this study was to assess the potential application of cell surface display in Candida tropicalis.Surface display gene cassettes were constructed using five anchoring proteins from Saccharomyces cerevisiae,three of which[(suppression of exponential defect protein,SED1),(cell wall protein 2,CWP2)and(delayed anaerobic protein 4,DAN4)]were reported to show higher activity of heterologous proteins thanα-agglutinin(AGα1).The performance of yeast-enhanced green fluorescent protein(yeGFP)was evaluated using laser scanning confocal microscopy and flow cytometry.The results showed that the three anchoring regions(SED1,CWP2 and AGα1)successfully displayed yeGFP on the cell wall.To investigate the effect of the three anchoring proteins on the surface display of Rhizopus oryzaeα-amylase(ROA1)and Aspergillus aculeatusβ-glucosidase(BGL1)in C.tropicalis,we constructed surface display gene cassettes for ROA1 and BGL1,respectively.The strains containing the anchoring proteins SED1 and CWP2 showed higher activity of ROA1 and BGL1 than the strains containing the anchoring protein AGα1.The highest ROA1 and BGL1 activities of strains with SED1 were 6.37 U/g CDW and 7.93 U/g CDW,respectively,which were sixfold and eightfold higher than those of strain with AGα1.In addition,we also optimized signal peptides.The results indicated that signal peptides have an impact on enzyme activity.
基金supported by funds from the Ministry of Education,Science and Technological Development of the Republic of Serbia via project numbers ON172049,ON173017 and III46010.
文摘The enzymatic degradation of azo dyes is a promising alternative to ineffective chemical and physical remediation methods.Lignin peroxidase(LiP)from Phanerochaete chrysosporium is a hemecontaining lignin-degrading oxidoreductase that catalyzes the peroxide-dependent oxidation of diverse molecules,including industrial dyes.This enzyme is therefore ideal as a starting point for protein engineering.Accordingly,we subjected two positions(165 and 264)in the environment of the catalytic Trp171 residue to saturation mutagenesis,and the resulting library of 104 independent clones was expressed on the surface of yeast cells.This yeast display library was used for the selection of variants with the ability to break down structurally-distinct azo dyes more efficiently.We identified mutants with up to 10-fold greater affinity than wild-type LiP for three diverse azo dyes(Evans blue,amido black 10B and Guinea green)and up to 13-fold higher catalytic activity.Additionally,cell wall fragments displaying mutant LiP enzymes were prepared by toluene-induced cell lysis,achieving significant increases in both enzyme activity and stability compared to a whole-cell biocatalyst.LiPcoated cell wall fragments retained their initial dye degradation activity after 10 reaction cycles each lasting 8 h.The best-performing mutants removed up to 2.5-fold more of each dye than the wild-type LiP in multiple reaction cycles.
基金Project supported by the National High-Tech R & D Program (863) of China (No. 2006AA10Z308)the National Science Foundation of China (No. 20776130)+1 种基金the Zhejiang Provincial Natural Science Foundation of China (No. Y4090309)the Zhejiang Provincial Science and Technology Program of China (No. 2009C32009)
文摘Surface display is effectively utilized to construct a whole-cell biocatalyst.Codon optimization has been proven to be effective in maximizing production of heterologous proteins in yeast.Here,the cDNA sequence of Rhizopus oryzae lipase (ROL) was optimized and synthesized according to the codon bias of Saccharomyces cerevisiae,and based on the Saccharomyces cerevisiae cell surface display system with α-agglutinin as an anchor,recombinant yeast displaying fully codon-optimized ROL with high activity was successfully constructed.Compared with the wild-type ROL-displaying yeast,the activity of the codon-optimized ROL yeast whole-cell biocatalyst (25 U/g dried cells) was 12.8-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate (pNPP) as the substrate.To our knowledge,this was the first attempt to combine the techniques of yeast surface display and codon optimization for whole-cell biocatalyst construction.Consequently,the yeast whole-cell ROL biocatalyst was constructed with high activity.The optimum pH and temperature for the yeast whole-cell ROL biocatalyst were pH 7.0 and 40 °C.Furthermore,this whole-cell biocatalyst was applied to the hydrolysis of tributyrin and the resulted conversion of butyric acid reached 96.91% after 144 h.