Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun...Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.展开更多
With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important ro...With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important role in maintaining the stability of shorebird population.Satellite tracking technique can obtain high-precision location information of individuals day and night,providing a good technical support for the study of quantitative relationship between waterfowls and their habitats.In this study,satellite tracking method,Remote Sensing(RS)and Geographic Information System(GIS)technology were used to analyze the activity pattern and habitat utilization characteristics of Pied Avocet during breeding period in an artificial wetland complex in the Yellow River Delta(YRD),China.The results showed that the breeding Pied Avocets had a small range of activity,with a total core and main home range of 33.10 km^(2) and 216.30 km^(2),respectively.This species tended to forage in the pond and salt pan during the day and night,respectively,with an unfixed staying time in the breeding ground.The distance between breeding ground and feeding ground was less than 6 km.It is emphasized that in addition to improving the conditions of the remaining natural habitats,effective managing artificial habitats is a priority for shorebird conservation.This research could provide reference for the management of artificial wetlands in coastal zones and supply technique support for the protection of shorebirds and their habitats,and alleviate human-bird conflicts and sustainable development of coastal zones.展开更多
Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this s...Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands.展开更多
Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological prote...Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.展开更多
Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence...Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence,spatial distribution,potential sources,and ecological risks of PFASs.Twenty-three out of 26 targeted PFASs were detected in surface sediment samples from the YRDW,with totalΣ23PFASs concentrations ranging from 0.23 to 16.30 ng g^(-1) dw and a median value of 2.27 ng g^(-1) dw.Perfluorooctanoic acid(PFOA),perfluorobutanoic acid(PFBA)and perfluorooctanesulfonic acid(PFOS)were the main contaminants.The detection frequency and concentration of perfluoroalkyl carboxylic acids(PFCAs)were higher than those of perfluoroal-kanesulfonic acids(PFSAs),while those of long-chain PFASs were higher than those of short-chain PFASs.The emerging PFASs substitutes were dominated by 6:2 chlorinated polyfluoroalkyl ether sulfonic acid(6:2 Cl-PFESA).The distribution of PFASs is significantly influenced by the total organic carbon content in the sediments.The concentration of PFASs seems to be related to human activities,with high concentration levels of PFASs near locations such as beaches and villages.By using a positive matrix factorization model,the potential sources of PFASs in the region were identified as metal plating mist inhibitor and fluoropolymer manufacturing sources,metal plating industry and firefighting foam and textile treatment sources,and food packaging material sources.The risk assessment indicated that PFASs in YRDW sediments do not pose a significant ecological risk to benthic organisms in the region overall,but PFOA and PFOS exert a low to moderate risk at individual stations.展开更多
The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the regio...The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.展开更多
Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspondence analyses (DCCAs) and a two-way indicator species analysis (TWINSPAN). The distributi...Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspondence analyses (DCCAs) and a two-way indicator species analysis (TWINSPAN). The distribution pattern and influential factors of the plant communities were also analyzed by testing elevation, slope, soil characteristics, longitude and latitude of 134 vegetation samples collected by representative plot sampling methods. Results showed that all the 134 vegetation samples could be divided into seven vegetation groups, separately dominated by Robinia pseucdoacacia, Imperata cylindrical, Miscanthus saccharifleus, Suaeda salsa, Aeluropus sinensis, Phragmites australis and Tamarix chinensis. The vegetation distribution pattern was mainly related to elevation, ground water depth and soil characteristics such as salinity and soluble potassium. Among the factors affecting distribution pattern of the plant communities, the species matrix explained by non-spatial environmental variation accounts for 45.2% of total variation. Spatial variation and spatial-structured environmental variation explain 11.8%, and 2.2%, respectively. Remained 40.8% of undetermined variation is attributed to biological and stochastic factors.展开更多
Geological disasters on the superficial seafloor were revealed in geological investigation on the Yellow River subaqueous delta. Combined with dynamic triaxial tests and wave flume experiments, occurring conditions an...Geological disasters on the superficial seafloor were revealed in geological investigation on the Yellow River subaqueous delta. Combined with dynamic triaxial tests and wave flume experiments, occurring conditions and forming patterns of liquefaction as well as motion of the liquefied soil were explained in this paper. Based on the viewpoint that the geological disasters were formed due to silty soil liquefaction under storm waves, re-stratification issue of the superficial stratum was analyzed. Movement of the liquefied soil agreed with the wave, leading to differentiation of the soil particles. Research issues in respect of geological, environment and engineering of storm-induced liquefaction were also discussed.展开更多
Feiyantan was the discharge area of Diaokou River distributary of the Yellow River during the period of 1964 to 1976. The coastal erosion feature and morphological evolution at the Feiyantan coast are studied in the l...Feiyantan was the discharge area of Diaokou River distributary of the Yellow River during the period of 1964 to 1976. The coastal erosion feature and morphological evolution at the Feiyantan coast are studied in the light of the topography and section depth, and the corresponding dynamics of wave and current. Results indicate that the protruding topography left after the Diaokou River distributary was abandoned is the main cause of strong coastal erosion. Further research suggests that waves start up the sediment and the tidal current transports it, and the waves and tidal current are combined to be the dominant dynamic mechanism of coastal erosion, in which the tidal residual current takes and transports the sediment outward, thus causing the sediment to wane in the coast.展开更多
The relationship between eco-hydrographic benefit of forest vegetation and climatic environmental factors is one of the focuses in the research on environmental protection and ecosystem countermeasures in Wetland. Th...The relationship between eco-hydrographic benefit of forest vegetation and climatic environmental factors is one of the focuses in the research on environmental protection and ecosystem countermeasures in Wetland. The runoff, sediment and soil moisture rate dynamics in Robinia pseudoacacia plantation and its clearcut area were investigated in the natural runoff experiment plots in Yellow River Delta Wet- land, Shandong Province, China. The correlation of height increment ofR. pseudoacacia with nine climate factors such as light, water, heat, etc. was analyzed by stepwise regression analysis. The results showed that the amounts of runoff and sediment in clearcut area of R. pseudoacacia were 53.9%-150.8% and 172.8%-387.1% higher than that in Robinia pseudoacacia plantation, respectively. The runoff peak value in R. pseudoacacia stand was obviously lower than that in clerarcut area, meantime, the occurrence of runoffpeak in R. pseudoacacia stand was 25 min later than in its clerarcut area. The soil moisture rates in R. pseudoacacia stand and its clearcut varied periodically with annual rainfall precipitation in both dry season and humid season. The annual mean soil moisture rate in R. pseudoacacia stand was 23.3%-25.6% higher than that in its clearcut area. Meanwhile, a regression model reflecting the correlation between the height increment of R. pseudoacacia and climatic factors was developed by stepwise regression procedure method. It showed that the light was the most important factor for the height increment ofR. pseudoacacia, followed by water and heat factors.展开更多
Feiyan Shoal is a sub Yellow River Delta, which was formed from Jan. 1964 to May 1976, when the Yellow River entered sea via Diaokou Channel. Since the terminal reach shifted to Qingshuigou channel in 1976, Feiyan Sho...Feiyan Shoal is a sub Yellow River Delta, which was formed from Jan. 1964 to May 1976, when the Yellow River entered sea via Diaokou Channel. Since the terminal reach shifted to Qingshuigou channel in 1976, Feiyan Shoal has been experiencing severe erosion and retreat. This paper explains the evolutionary characteristics of the typical profile of Feiyan Shoal from the perspective of dynamical force and sediments' characteristics. All this is on the basis of the data of topographic profiles observed since the 1970s and the samples of hydrology and sediments collected in situ in Apr. 2004, the analysis of the retreating distance, and the tidal and wave friction velocity distribution. Feiyan Shoal topographical profile has experienced a course of "fast erosion and retrogression - slow eroding modulation - fluctuate triggering change" in recent 30 years, which is also the gradual disappearing process of the delta front. The different intensity of sediment erosion resistance is the main reason for the erosion speed changes. Due to the hydrodynamic force changes, the water depth range of maximum retreating distance and between erosion and progradation became shallow. It indicates that the storm tide will still be the triggering force of seashore topographic profile evolutions in the future.展开更多
The Yellow River Delta wetland is the youngest wetland ecosystem in China's warm temperate zone. To better understand how its landscape pattern has changed over time and the underlying factors responsible, this st...The Yellow River Delta wetland is the youngest wetland ecosystem in China's warm temperate zone. To better understand how its landscape pattern has changed over time and the underlying factors responsible, this study analyzed the dynamic changes of wetlands using five Landsat series of images, namely MSS(Mulri Spectral Scanner), TM(Thematic Mapper), and OLI(Operational Land Imager) sensors in 1976, 1986, 1996, 2006, and 2016. Object-oriented classification and the combination of spatial and spectral features and both the Normalized Difference Vegetation Index(NDVI) and Normalized Difference Water Index(NDWI), as well as brightness characteristic indices, were used to classify the images in eCognition software. Landscape pattern changes in the Yellow River Delta over the past 40 years were then delineated using transition matrix and landscape index methods. Results show that: 1) from1976 to 2016, the total area of wetlands in the study area decreased from 2594.76 to 2491.79 km^2, while that of natural wetlands decreased by 954.03 km^2 whereas human-made wetlands increased by 851.06 km^2. 2) The transformation of natural wetlands was extensive: 31.34% of those covered by Suaeda heteropteras were transformed into reservoirs and ponds, and 24.71% with Phragmites australis coverage were transformed into dry farmland. Some human-made wetlands were transformed into non-wetlands types: 1.55% of reservoirs and ponds became construction land, and likewise 21.27% were transformed into dry farmland. 3) From 1976 to 2016, as the intensity of human activities increased, the number of landscape types in the study area continuously increased. Patches were scattered and more fragmented. The whole landscape became more complex. In short, over the past 40 years, the wetlands of the Yellow River Delta have been degraded, with the area of natural wetlands substantially reduced. Human activities were the dominant forces driving these changes in the Yellow River Delta.展开更多
Comprehensive study on land-use change of spatial pattern and temporal process is the key component in LUCC study nowadays. Based on the theories and methods of Geo-information Tupu (Carto-methodology in Geo-informati...Comprehensive study on land-use change of spatial pattern and temporal process is the key component in LUCC study nowadays. Based on the theories and methods of Geo-information Tupu (Carto-methodology in Geo-information, CMGI), integration of spatial pattern and temporal processes of land-use change in the Yellow River Delta (YRD) are studied in the paper, which is supported by ERDAS and ARC/INFO software. The main contents include: (1) concept models of Tupu by spatial-temporal integration on land-use change, whose Tupu unit is synthesized by "Spatial·Attribute·Process" features and composed of relatively homogeneous geographical unit and temporal unit; (2) data sources and handling process, where four stages of spatial features in 1956, 1984, 1991, and 1996 are acquired; (3) integration of series of temporal-spatial Tupu, reconstruction series of "Arising" Tupu, spatial-temporal Process Tupu and the spatial temporal Pattern Tupu on land-use change by remap tables; (4) Pattern Tupu analysis on land-use change in YRD during 1956-1996; and (5) spatial difference of the Pattern Tupu analysis by dynamic Tupu units. The various landform units and seven sub-deltas generated by the Yellow River since 1855 are different. The Tupu analysis on land-use in the paper is a promising try on the comprehensive research of "spatial pattern of dynamic process" and "temporal process of spatial pattern" in LUCC research. The Tupu methodology would be a powerful and efficient tool on integrated studies of spatial pattern and temporal process in Geo-science.展开更多
Coastal regions are threatened by natural processes, such as erosion driven by storm surges and the effect of jetties, as well as by human behavior. The coastline of the Yellow River Delta(YRD) was monitored using the...Coastal regions are threatened by natural processes, such as erosion driven by storm surges and the effect of jetties, as well as by human behavior. The coastline of the Yellow River Delta(YRD) was monitored using the general high-tide line method, which combines Remote sensing(RS) and geographic information system(GIS) technology, using multi-spectral scanner(MSS), thematic mapper(TM), and enhanced thematic mapper plus(ETM+) images of the YRD from 1976 to 2014 as a data source. The results demonstrated that the shape and length of the YRD coastline has changed dramatically since 1976. The course of the Diaokouhe channel has resulted in mainly inland erosion in the north, and is primarily marine erosion; therefore, it was termed an erosion-type estuary. However, the coastline of the Qingshuigou course has moved seaward, demonstrating an accretion stage, and was therefore termed an accretion-type estuary. The coastline advanced forward before 1997 and shrank after 2003 in the southern part of the river mouth, which was due to the shift in the river mouth in 1996. It has continually extended outward in the northern part of the river mouth from 2003 onward. The coastline in the southern part of the river mouth has moved randomly, with the occurrence of both erosion and sedimentation caused by land reclamation and sea wave intrusion. In most cases, the coastline has extended offshore, especially in the northern part of the river mouth. The YRD coastline has changed frequently and rapidly from 1992 to 2014. The river mouth channel, river water and sediments, and precipitation were the major factors affecting the YRD. The YRD coastline was mainly in an accretion stage during flow periods. The erosion rate decreased and tended to be stable during a dry period. The coastline was basically stable when dry periods occurred over a long period. The location of Yellow River ports and sea erosion were the main factors driving coastline changes. The coastline was mainly influenced by the flow path of the Yellow River, with recent human activity also becoming a factor.展开更多
The bioremediation potential of bacteria indigenous to soils of the Yellow River Delta in China was evaluated as a treatment option for soil remediation. Petroleum hydrocarbon degraders were isolated from contaminated...The bioremediation potential of bacteria indigenous to soils of the Yellow River Delta in China was evaluated as a treatment option for soil remediation. Petroleum hydrocarbon degraders were isolated from contaminated soil samples from the Yellow River Delta. Four microbial communities and eight isolates were obtained. The optimal temperature, salinity, pH, and the ratios of C, N, and P (C:N:P) for the maximum biodegradation of diesel oil, crude oil, n-alkanes, and polyaromatic hydrocarbons by indigenous bacteria were determined, and the kinetics changes in microbial communities were monitored. In general, the mixed microbial consortia demonstrated wider catabolic versatility and faster overall rate of hydrocarbon degradation than individual isolates. Our experimental results demonstrated the feasibility of biodegradation of petroleum hydrocarbon by indigenous bacteria for soil remediation in the Yellow River Delta.展开更多
Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem.This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow ...Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem.This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow River Delta,China.We calculated the hydrological connectivity based on the hydraulic resistance and graph theory,and measured soil total carbon and organic carbon under four different hydrological connectivity gradients(Ⅰ0‒0.03,Ⅱ0.03‒0.06,Ⅲ0.06‒0.12,Ⅳ0.12‒0.39).The results showed that hydrological connectivity increased in the north shore of the Yellow River and the south tidal flat from 2007 to 2018,which concentrated in the mainstream of the Yellow River and the tidal creek.High hydrological connectivity was maintained in the wetland restoration area.The soil total carbon storage and organic carbon storage significantly increased with increasing hydrological connectivity fromⅠtoⅢgradient and decreased inⅣgradient.The highest soil total carbon storage of 0‒30 cm depth was 5172.34 g/m^(2),and organic carbon storage 2764.31 g/m^(2)inⅢgradient.The hydrological connectivity changed with temporal and spatial change during 2007‒2018 and had a noticeable impact on soil carbon storage in the Yellow River Delta.The results indicated that appropriate hydrological connectivity,i.e.0.08,could effectively promote soil carbon storage.展开更多
Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community...Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The succession series of plant community in the study area was as follows: saline bare land→community Suaeda salsa→community Tamarix chinensis→grassland. Succession degree and succession process of 12 succession communities were calculated. Most of these communities were in the lower succession stage, however, community Phragmites communis+Glycine soja and community Imperata cylindrica+G. soja were close to the succession stage of grassland climax. Five species diversity indices were used to study the changes in species richness, species evenness and diversity during succession of community. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development. The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of the modern Yellow River Delta. It affected community structure, species composition and succession process.展开更多
Multiple natural and human factors in estuarine wetlands result in complicated land surface characteristics with distinct spatial and temporal heterogeneities,thereby contributing to the difficulty in identifying spat...Multiple natural and human factors in estuarine wetlands result in complicated land surface characteristics with distinct spatial and temporal heterogeneities,thereby contributing to the difficulty in identifying spatiotemporal variations and influencing factors of plant diversity.A unique estuarine wetland gradient system(UEWGS)consisting of soil,vegetation,heat,distance,landscape,and anthropogenic gradients was established based on the ecological features of estuarine wetland through remote sensing and field investigation methods.It resolved the complicated land surface characteristics,covered all aspects of factors influencing plant diversity,and possessed distinct spatiotemporal heterogeneities.The Yellow River Delta,the largest estuarine wetland in the northern China,was selected as the study area to demonstrate UEWGS in four seasons in 2017.A total of 123 species were recorded with considerable seasonal difference.Phragmites australis,Suaeda salsa,and Tamarix chinensis were the dominant species,and crop species also played important roles.In single effect,all aspects of gradients exerted significant influences,yet only vegetation gradient possessed significant influences in all seasons.In comprehensive effect,soil,vegetation,heat,and distance gradients showed significant gross influences.Moisture content in soil gradient and net primary productivity in vegetation gradient possessed significant net influences in all seasons and can be considered as the main driving factor and indicator,respectively,of plant diversity.The results validated the significance of UEWGS in revealing the plant diversity spatiotemporal characteristics and influencing factors,and UEWGS possessed universal applicability in the spatiotemporal analysis of plant diversity in estuarine areas.展开更多
A statistic analysis predicting coastal change of the Yellow River abandoneddelta lobe formed from 1964 to 1976 using Landsat TM imagery was conducted by calculating thecoastal erosion/accumulation rates obtained from...A statistic analysis predicting coastal change of the Yellow River abandoneddelta lobe formed from 1964 to 1976 using Landsat TM imagery was conducted by calculating thecoastal erosion/accumulation rates obtained from four different classic profiles and plotting thechange curves of coastline with time. The studies showed that the regularity of the evolution of thecoastline was very obvious after the delta lobe was abandoned. The coastal evolution can be dividedinto three different phases: erosion phase, transition phase and cyclical change phase. At present,the coast has evolved to the cyclical change phase. The natural coastline change cycle is 4 yearsbetween the dam and is 5 years to the west of the dam. In the cyclical change phase, thequasi-equilibrium line of the coast was located near the coastline of 1996, the current coast mayrecede 1.79 km to reach the natural equilibrium coastline. Therefore, some measures must be taken toprotect the dam or the dam will be destroyed by the force of nature. The curves also revealed themagnitude of erosion/accumulation rates would decrease gradually with time. The results of the studyoffer guidance for coast protection, and proves that the evolution of silty coast actually was acyclical change process too.展开更多
Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon...Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.展开更多
基金China Postdoctoral Science Foundation,Grant/Award Number:2023M731999National Natural Science Foundation of China,Grant/Award Number:52301326。
文摘Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.
基金Under the auscpices of Shandong Provincial Natural Science Foundation (No.ZR2020QD090)Research Funds of Beijing VMinFull Limted (No.VMF2021RS)+1 种基金National Natural Science Foundation of China (No.42176221)Seed Project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences (No.YICE351030601)。
文摘With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important role in maintaining the stability of shorebird population.Satellite tracking technique can obtain high-precision location information of individuals day and night,providing a good technical support for the study of quantitative relationship between waterfowls and their habitats.In this study,satellite tracking method,Remote Sensing(RS)and Geographic Information System(GIS)technology were used to analyze the activity pattern and habitat utilization characteristics of Pied Avocet during breeding period in an artificial wetland complex in the Yellow River Delta(YRD),China.The results showed that the breeding Pied Avocets had a small range of activity,with a total core and main home range of 33.10 km^(2) and 216.30 km^(2),respectively.This species tended to forage in the pond and salt pan during the day and night,respectively,with an unfixed staying time in the breeding ground.The distance between breeding ground and feeding ground was less than 6 km.It is emphasized that in addition to improving the conditions of the remaining natural habitats,effective managing artificial habitats is a priority for shorebird conservation.This research could provide reference for the management of artificial wetlands in coastal zones and supply technique support for the protection of shorebirds and their habitats,and alleviate human-bird conflicts and sustainable development of coastal zones.
基金Under the auspices of Natural Science Foundation of China(No.U2106209,42071126)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050202)International Science Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)。
文摘Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands.
基金supported by the National Key Research and Development Program of China(No.2022YFC3204301).
文摘Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.
基金financially supported by the National Natural Science Foundation of China(NSFC)(No.42377217)the Cooperation Fund between Dongying City and Universities(No.SXHZ-2023-02-6).
文摘Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence,spatial distribution,potential sources,and ecological risks of PFASs.Twenty-three out of 26 targeted PFASs were detected in surface sediment samples from the YRDW,with totalΣ23PFASs concentrations ranging from 0.23 to 16.30 ng g^(-1) dw and a median value of 2.27 ng g^(-1) dw.Perfluorooctanoic acid(PFOA),perfluorobutanoic acid(PFBA)and perfluorooctanesulfonic acid(PFOS)were the main contaminants.The detection frequency and concentration of perfluoroalkyl carboxylic acids(PFCAs)were higher than those of perfluoroal-kanesulfonic acids(PFSAs),while those of long-chain PFASs were higher than those of short-chain PFASs.The emerging PFASs substitutes were dominated by 6:2 chlorinated polyfluoroalkyl ether sulfonic acid(6:2 Cl-PFESA).The distribution of PFASs is significantly influenced by the total organic carbon content in the sediments.The concentration of PFASs seems to be related to human activities,with high concentration levels of PFASs near locations such as beaches and villages.By using a positive matrix factorization model,the potential sources of PFASs in the region were identified as metal plating mist inhibitor and fluoropolymer manufacturing sources,metal plating industry and firefighting foam and textile treatment sources,and food packaging material sources.The risk assessment indicated that PFASs in YRDW sediments do not pose a significant ecological risk to benthic organisms in the region overall,but PFOA and PFOS exert a low to moderate risk at individual stations.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41461011)。
文摘The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.
基金Foundation project: This study was financially supported by the Na- tional Natural Science Foundation of China (No. 40771172) and the orientation project of the Chinese Academy of Sciences (No. kzcx2-yw-308)
文摘Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspondence analyses (DCCAs) and a two-way indicator species analysis (TWINSPAN). The distribution pattern and influential factors of the plant communities were also analyzed by testing elevation, slope, soil characteristics, longitude and latitude of 134 vegetation samples collected by representative plot sampling methods. Results showed that all the 134 vegetation samples could be divided into seven vegetation groups, separately dominated by Robinia pseucdoacacia, Imperata cylindrical, Miscanthus saccharifleus, Suaeda salsa, Aeluropus sinensis, Phragmites australis and Tamarix chinensis. The vegetation distribution pattern was mainly related to elevation, ground water depth and soil characteristics such as salinity and soluble potassium. Among the factors affecting distribution pattern of the plant communities, the species matrix explained by non-spatial environmental variation accounts for 45.2% of total variation. Spatial variation and spatial-structured environmental variation explain 11.8%, and 2.2%, respectively. Remained 40.8% of undetermined variation is attributed to biological and stochastic factors.
基金supported by National Science Foundation of China (No. 41076021)
文摘Geological disasters on the superficial seafloor were revealed in geological investigation on the Yellow River subaqueous delta. Combined with dynamic triaxial tests and wave flume experiments, occurring conditions and forming patterns of liquefaction as well as motion of the liquefied soil were explained in this paper. Based on the viewpoint that the geological disasters were formed due to silty soil liquefaction under storm waves, re-stratification issue of the superficial stratum was analyzed. Movement of the liquefied soil agreed with the wave, leading to differentiation of the soil particles. Research issues in respect of geological, environment and engineering of storm-induced liquefaction were also discussed.
文摘Feiyantan was the discharge area of Diaokou River distributary of the Yellow River during the period of 1964 to 1976. The coastal erosion feature and morphological evolution at the Feiyantan coast are studied in the light of the topography and section depth, and the corresponding dynamics of wave and current. Results indicate that the protruding topography left after the Diaokou River distributary was abandoned is the main cause of strong coastal erosion. Further research suggests that waves start up the sediment and the tidal current transports it, and the waves and tidal current are combined to be the dominant dynamic mechanism of coastal erosion, in which the tidal residual current takes and transports the sediment outward, thus causing the sediment to wane in the coast.
基金the National "11th Five Year" Plan of Science and technology (2006BAD26B06,2006BAD03A1205) Ecological Restore Project of Water Resources Ministry of China (2006-2008)
文摘The relationship between eco-hydrographic benefit of forest vegetation and climatic environmental factors is one of the focuses in the research on environmental protection and ecosystem countermeasures in Wetland. The runoff, sediment and soil moisture rate dynamics in Robinia pseudoacacia plantation and its clearcut area were investigated in the natural runoff experiment plots in Yellow River Delta Wet- land, Shandong Province, China. The correlation of height increment ofR. pseudoacacia with nine climate factors such as light, water, heat, etc. was analyzed by stepwise regression analysis. The results showed that the amounts of runoff and sediment in clearcut area of R. pseudoacacia were 53.9%-150.8% and 172.8%-387.1% higher than that in Robinia pseudoacacia plantation, respectively. The runoff peak value in R. pseudoacacia stand was obviously lower than that in clerarcut area, meantime, the occurrence of runoffpeak in R. pseudoacacia stand was 25 min later than in its clerarcut area. The soil moisture rates in R. pseudoacacia stand and its clearcut varied periodically with annual rainfall precipitation in both dry season and humid season. The annual mean soil moisture rate in R. pseudoacacia stand was 23.3%-25.6% higher than that in its clearcut area. Meanwhile, a regression model reflecting the correlation between the height increment of R. pseudoacacia and climatic factors was developed by stepwise regression procedure method. It showed that the light was the most important factor for the height increment ofR. pseudoacacia, followed by water and heat factors.
基金the Major State Basic Research Development Program of China(‘973’Program)(Grant No.2002CB412408)the Shanghai Youth Science and Technology Venus(GrantNo.06QA14016).
文摘Feiyan Shoal is a sub Yellow River Delta, which was formed from Jan. 1964 to May 1976, when the Yellow River entered sea via Diaokou Channel. Since the terminal reach shifted to Qingshuigou channel in 1976, Feiyan Shoal has been experiencing severe erosion and retreat. This paper explains the evolutionary characteristics of the typical profile of Feiyan Shoal from the perspective of dynamical force and sediments' characteristics. All this is on the basis of the data of topographic profiles observed since the 1970s and the samples of hydrology and sediments collected in situ in Apr. 2004, the analysis of the retreating distance, and the tidal and wave friction velocity distribution. Feiyan Shoal topographical profile has experienced a course of "fast erosion and retrogression - slow eroding modulation - fluctuate triggering change" in recent 30 years, which is also the gradual disappearing process of the delta front. The different intensity of sediment erosion resistance is the main reason for the erosion speed changes. Due to the hydrodynamic force changes, the water depth range of maximum retreating distance and between erosion and progradation became shallow. It indicates that the storm tide will still be the triggering force of seashore topographic profile evolutions in the future.
基金Under the auspices of National Key Research&Development Program of China(No.2017YFC0505901,2017YFA0604904)
文摘The Yellow River Delta wetland is the youngest wetland ecosystem in China's warm temperate zone. To better understand how its landscape pattern has changed over time and the underlying factors responsible, this study analyzed the dynamic changes of wetlands using five Landsat series of images, namely MSS(Mulri Spectral Scanner), TM(Thematic Mapper), and OLI(Operational Land Imager) sensors in 1976, 1986, 1996, 2006, and 2016. Object-oriented classification and the combination of spatial and spectral features and both the Normalized Difference Vegetation Index(NDVI) and Normalized Difference Water Index(NDWI), as well as brightness characteristic indices, were used to classify the images in eCognition software. Landscape pattern changes in the Yellow River Delta over the past 40 years were then delineated using transition matrix and landscape index methods. Results show that: 1) from1976 to 2016, the total area of wetlands in the study area decreased from 2594.76 to 2491.79 km^2, while that of natural wetlands decreased by 954.03 km^2 whereas human-made wetlands increased by 851.06 km^2. 2) The transformation of natural wetlands was extensive: 31.34% of those covered by Suaeda heteropteras were transformed into reservoirs and ponds, and 24.71% with Phragmites australis coverage were transformed into dry farmland. Some human-made wetlands were transformed into non-wetlands types: 1.55% of reservoirs and ponds became construction land, and likewise 21.27% were transformed into dry farmland. 3) From 1976 to 2016, as the intensity of human activities increased, the number of landscape types in the study area continuously increased. Patches were scattered and more fragmented. The whole landscape became more complex. In short, over the past 40 years, the wetlands of the Yellow River Delta have been degraded, with the area of natural wetlands substantially reduced. Human activities were the dominant forces driving these changes in the Yellow River Delta.
文摘Comprehensive study on land-use change of spatial pattern and temporal process is the key component in LUCC study nowadays. Based on the theories and methods of Geo-information Tupu (Carto-methodology in Geo-information, CMGI), integration of spatial pattern and temporal processes of land-use change in the Yellow River Delta (YRD) are studied in the paper, which is supported by ERDAS and ARC/INFO software. The main contents include: (1) concept models of Tupu by spatial-temporal integration on land-use change, whose Tupu unit is synthesized by "Spatial·Attribute·Process" features and composed of relatively homogeneous geographical unit and temporal unit; (2) data sources and handling process, where four stages of spatial features in 1956, 1984, 1991, and 1996 are acquired; (3) integration of series of temporal-spatial Tupu, reconstruction series of "Arising" Tupu, spatial-temporal Process Tupu and the spatial temporal Pattern Tupu on land-use change by remap tables; (4) Pattern Tupu analysis on land-use change in YRD during 1956-1996; and (5) spatial difference of the Pattern Tupu analysis by dynamic Tupu units. The various landform units and seven sub-deltas generated by the Yellow River since 1855 are different. The Tupu analysis on land-use in the paper is a promising try on the comprehensive research of "spatial pattern of dynamic process" and "temporal process of spatial pattern" in LUCC research. The Tupu methodology would be a powerful and efficient tool on integrated studies of spatial pattern and temporal process in Geo-science.
基金Under the auspices of National Natural Science Foundation of China(No.41602356)China Postdoctoral Science Foundation(No.2017M622240)+2 种基金Key Research and Development Plan of Shandong Province(No.GG201712050002)Geological Exploration Fund of Shandong Province(No.2013(55),2016(7))Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals Open Fund(No.DMSM2018024)
文摘Coastal regions are threatened by natural processes, such as erosion driven by storm surges and the effect of jetties, as well as by human behavior. The coastline of the Yellow River Delta(YRD) was monitored using the general high-tide line method, which combines Remote sensing(RS) and geographic information system(GIS) technology, using multi-spectral scanner(MSS), thematic mapper(TM), and enhanced thematic mapper plus(ETM+) images of the YRD from 1976 to 2014 as a data source. The results demonstrated that the shape and length of the YRD coastline has changed dramatically since 1976. The course of the Diaokouhe channel has resulted in mainly inland erosion in the north, and is primarily marine erosion; therefore, it was termed an erosion-type estuary. However, the coastline of the Qingshuigou course has moved seaward, demonstrating an accretion stage, and was therefore termed an accretion-type estuary. The coastline advanced forward before 1997 and shrank after 2003 in the southern part of the river mouth, which was due to the shift in the river mouth in 1996. It has continually extended outward in the northern part of the river mouth from 2003 onward. The coastline in the southern part of the river mouth has moved randomly, with the occurrence of both erosion and sedimentation caused by land reclamation and sea wave intrusion. In most cases, the coastline has extended offshore, especially in the northern part of the river mouth. The YRD coastline has changed frequently and rapidly from 1992 to 2014. The river mouth channel, river water and sediments, and precipitation were the major factors affecting the YRD. The YRD coastline was mainly in an accretion stage during flow periods. The erosion rate decreased and tended to be stable during a dry period. The coastline was basically stable when dry periods occurred over a long period. The location of Yellow River ports and sea erosion were the main factors driving coastline changes. The coastline was mainly influenced by the flow path of the Yellow River, with recent human activity also becoming a factor.
基金the National Natural Science Foundation of China (No.30570340)the Foundation of the Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, SOA (No.200701) Cheung Kong Scholar Program of the Education Ministry of China.
文摘The bioremediation potential of bacteria indigenous to soils of the Yellow River Delta in China was evaluated as a treatment option for soil remediation. Petroleum hydrocarbon degraders were isolated from contaminated soil samples from the Yellow River Delta. Four microbial communities and eight isolates were obtained. The optimal temperature, salinity, pH, and the ratios of C, N, and P (C:N:P) for the maximum biodegradation of diesel oil, crude oil, n-alkanes, and polyaromatic hydrocarbons by indigenous bacteria were determined, and the kinetics changes in microbial communities were monitored. In general, the mixed microbial consortia demonstrated wider catabolic versatility and faster overall rate of hydrocarbon degradation than individual isolates. Our experimental results demonstrated the feasibility of biodegradation of petroleum hydrocarbon by indigenous bacteria for soil remediation in the Yellow River Delta.
基金Under the auspices of the National Key Research and Development Program of China(No.2017YFC0505903)College Student Research and Career-creation Program of China(No.201810022070)。
文摘Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem.This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow River Delta,China.We calculated the hydrological connectivity based on the hydraulic resistance and graph theory,and measured soil total carbon and organic carbon under four different hydrological connectivity gradients(Ⅰ0‒0.03,Ⅱ0.03‒0.06,Ⅲ0.06‒0.12,Ⅳ0.12‒0.39).The results showed that hydrological connectivity increased in the north shore of the Yellow River and the south tidal flat from 2007 to 2018,which concentrated in the mainstream of the Yellow River and the tidal creek.High hydrological connectivity was maintained in the wetland restoration area.The soil total carbon storage and organic carbon storage significantly increased with increasing hydrological connectivity fromⅠtoⅢgradient and decreased inⅣgradient.The highest soil total carbon storage of 0‒30 cm depth was 5172.34 g/m^(2),and organic carbon storage 2764.31 g/m^(2)inⅢgradient.The hydrological connectivity changed with temporal and spatial change during 2007‒2018 and had a noticeable impact on soil carbon storage in the Yellow River Delta.The results indicated that appropriate hydrological connectivity,i.e.0.08,could effectively promote soil carbon storage.
基金Project(No. Z2006D04)supported by the Natural Science Founda-tion of Shandong Province, China
文摘Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The succession series of plant community in the study area was as follows: saline bare land→community Suaeda salsa→community Tamarix chinensis→grassland. Succession degree and succession process of 12 succession communities were calculated. Most of these communities were in the lower succession stage, however, community Phragmites communis+Glycine soja and community Imperata cylindrica+G. soja were close to the succession stage of grassland climax. Five species diversity indices were used to study the changes in species richness, species evenness and diversity during succession of community. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development. The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of the modern Yellow River Delta. It affected community structure, species composition and succession process.
基金Under the auspices of the National Natural Science Foundation of China(No.41871089)the Basic Scientific Fund for National Public Research Institutes of China(No.2018Q07)+3 种基金the National Natural Science Foundation of China(No.41971119)the Natural Science Foundation of Shandong Province(No.ZR2019MD024)Shandong Province University Youth Innovation Team(No.2019KJD010)the Open Research Fund Program of Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta(No.2019KFJJ01).
文摘Multiple natural and human factors in estuarine wetlands result in complicated land surface characteristics with distinct spatial and temporal heterogeneities,thereby contributing to the difficulty in identifying spatiotemporal variations and influencing factors of plant diversity.A unique estuarine wetland gradient system(UEWGS)consisting of soil,vegetation,heat,distance,landscape,and anthropogenic gradients was established based on the ecological features of estuarine wetland through remote sensing and field investigation methods.It resolved the complicated land surface characteristics,covered all aspects of factors influencing plant diversity,and possessed distinct spatiotemporal heterogeneities.The Yellow River Delta,the largest estuarine wetland in the northern China,was selected as the study area to demonstrate UEWGS in four seasons in 2017.A total of 123 species were recorded with considerable seasonal difference.Phragmites australis,Suaeda salsa,and Tamarix chinensis were the dominant species,and crop species also played important roles.In single effect,all aspects of gradients exerted significant influences,yet only vegetation gradient possessed significant influences in all seasons.In comprehensive effect,soil,vegetation,heat,and distance gradients showed significant gross influences.Moisture content in soil gradient and net primary productivity in vegetation gradient possessed significant net influences in all seasons and can be considered as the main driving factor and indicator,respectively,of plant diversity.The results validated the significance of UEWGS in revealing the plant diversity spatiotemporal characteristics and influencing factors,and UEWGS possessed universal applicability in the spatiotemporal analysis of plant diversity in estuarine areas.
文摘A statistic analysis predicting coastal change of the Yellow River abandoneddelta lobe formed from 1964 to 1976 using Landsat TM imagery was conducted by calculating thecoastal erosion/accumulation rates obtained from four different classic profiles and plotting thechange curves of coastline with time. The studies showed that the regularity of the evolution of thecoastline was very obvious after the delta lobe was abandoned. The coastal evolution can be dividedinto three different phases: erosion phase, transition phase and cyclical change phase. At present,the coast has evolved to the cyclical change phase. The natural coastline change cycle is 4 yearsbetween the dam and is 5 years to the west of the dam. In the cyclical change phase, thequasi-equilibrium line of the coast was located near the coastline of 1996, the current coast mayrecede 1.79 km to reach the natural equilibrium coastline. Therefore, some measures must be taken toprotect the dam or the dam will be destroyed by the force of nature. The curves also revealed themagnitude of erosion/accumulation rates would decrease gradually with time. The results of the studyoffer guidance for coast protection, and proves that the evolution of silty coast actually was acyclical change process too.
文摘Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.