期刊文献+
共找到3,496篇文章
< 1 2 175 >
每页显示 20 50 100
Spatial Heterogeneity of Embedded Water Consumption from the Perspective of Virtual Water Surplus and Deficit in the Yellow River Basin,China
1
作者 MA Weijing LI Xiangjie +1 位作者 KOU Jingwen LI Chengyi 《Chinese Geographical Science》 SCIE CSCD 2024年第2期311-326,共16页
Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its i... Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its influencing factors remains further study.In this study,for better investigating the pattern and heterogeneity of virtual water trade inside and outside provincial regions along the Yellow River Basin in 2015 using the input-output model(MRIO),we proposed two new concepts,i.e.,virtual water surplus and virtual water deficit,and then used the Logarithmic Mean Divisia Index(LMDI)model to identify the inherent mechanism of the imbalance of virtual water trade between provincial regions along the Yellow River Basin and the other four regions in China.The results show that:1)in provincial regions along the Yellow River Basin,the less developed the economy was,the larger the contribution of the agricultural sector in virtual water trade,while the smaller the contribution of the industrial sector.2)Due to the large output of agricultural products,the upstream and midstream provincial regions of the Yellow River Basin had a virtual water surplus,with a net outflow of virtual water of 2.7×10^(8) m^(3) and 0.9×10^(8) m^(3),respectively.3)provincial regions along the Yellow River Basin were in a virtual water deficit with the rest of China,and the decisive factor was the active degree of trade with the outside.This study would be beneficial to illuminate the trade-related water use issues in provincial regions along the Yellow River Basin,which has farreaching practical signific-ance for alleviating water scarcity. 展开更多
关键词 virtual water trade(VWT) input-output model(MRIO) virtual water surplus virtual water deficit yellow river basin China
下载PDF
Response of ecosystem carbon storage to land use change from 1985 to 2050 in the Ningxia Section of Yellow River Basin,China
2
作者 LIN Yanmin HU Zhirui +5 位作者 LI Wenhui CHEN Haonan WANG Fang NAN Xiongxiong YANG Xuelong ZHANG Wenjun 《Journal of Arid Land》 SCIE CSCD 2024年第1期110-130,共21页
Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this... Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas. 展开更多
关键词 carbon storage land use change nighttime light Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model patch-generating land use simulation(PLUS)model geographical detector(Geodetector) yellow river basin
下载PDF
Changes of Terrestrial Water Storage in the Yellow River Basin Under Global Warming
3
作者 曾昕瑞 管晓丹 +2 位作者 陈涵 魏志敏 王国栋 《Journal of Tropical Meteorology》 SCIE 2024年第2期132-148,共17页
The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to r... The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to rainfall patterns.Between 1979 and 2020,there has been a decrease in snowfall in the Yellow River Basin at a rate of-3.03 mm dec^(-1),while rainfall has been increasing at a rate of 1.00 mm dec^(-1).Consequently,the snowfall-to-rainfall ratio(SRR)has decreased.Snowfall directly replenishes terrestrial water storage(TWS)in solid form until it melts,while rainfall is rapidly lost through runoff and evaporation,in addition to infiltrating underground or remaining on the surface.Therefore,the decreasing SRR accelerates the depletion of water resources.According to the surface water balance equation,the reduction in precipitation and runoff,along with an increase in evaporation,results in a decrease in TWS during the cold season within the Yellow River Basin.In addition to climate change,human activities,considering the region's dense population and extensive agricultural land,also accelerate the decline of TWS.Notably,irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin(71.8%)and primarily occurs during the warm season(especially from June to August).The impact of human activities and climate change on the water cycle requires further in-depth research. 展开更多
关键词 terrestrial water storage melting level height surface water balance human activities yellow river basin
下载PDF
Quantitative distinction of the relative actions of climate change and human activities on vegetation evolution in the Yellow River Basin of China during 1981-2019 被引量:4
4
作者 LIU Yifeng GUO Bing +3 位作者 LU Miao ZANG Wenqian YU Tao CHEN Donghua 《Journal of Arid Land》 SCIE CSCD 2023年第1期91-108,共18页
Under the combined influence of climate change and human activities,vegetation ecosystem has undergone profound changes.It can be seen that there are obvious differences in the evolution patterns and driving mechanism... Under the combined influence of climate change and human activities,vegetation ecosystem has undergone profound changes.It can be seen that there are obvious differences in the evolution patterns and driving mechanisms of vegetation ecosystem in different historical periods.Therefore,it is urgent to identify and reveal the dominant factors and their contribution rates in the vegetation change cycle.Based on the data of climate elements(sunshine hours,precipitation and temperature),human activities(population intensity and GDP intensity)and other natural factors(altitude,slope and aspect),this study explored the spatial and temporal evolution patterns of vegetation NDVI in the Yellow River Basin of China from 1989 to 2019 through a residual method,a trend analysis,and a gravity center model,and quantitatively distinguished the relative actions of climate change and human activities on vegetation evolution based on Geodetector model.The results showed that the spatial distribution of vegetation NDVI in the Yellow River Basin showed a decreasing trend from southeast to northwest.During 1981-2019,the temporal variation of vegetation NDVI showed an overall increasing trend.The gravity centers of average vegetation NDVI during the study period was distributed in Zhenyuan County,Gansu Province,and the center moved northeastwards from 1981 to 2019.During 1981-2000 and 2001-2019,the proportion of vegetation restoration areas promoted by the combined action of climate change and human activities was the largest.During the study period(1981-2019),the dominant factors influencing vegetation NDVI shifted from natural factors to human activities.These results could provide decision support for the protection and restoration of vegetation ecosystem in the Yellow River Basin. 展开更多
关键词 vegetation evolution driving mechanisms climate change human activities relative actions Geodetector yellow river basin
下载PDF
A Comprehensive Evaluation Framework of Water-Energy-Food System Coupling Coordination in the Yellow River Basin,China 被引量:2
5
作者 YIN Dengyu YU Haochen +3 位作者 LU Yanqi ZHANG Jian LI Gensheng LI Xiaoshun 《Chinese Geographical Science》 SCIE CSCD 2023年第2期333-350,共18页
For mankind’s survival and development,water,energy,and food(WEF)are essential material guarantees.In China,however,the spatial distribution of WEF is seriously unbalanced and mismatched.Here,a collaborative governan... For mankind’s survival and development,water,energy,and food(WEF)are essential material guarantees.In China,however,the spatial distribution of WEF is seriously unbalanced and mismatched.Here,a collaborative governance mechanism that aims at nexus security needs to be urgently established.In this paper,the Yellow River Basin in China with a representative WEF system,was selected as a case.Firstly,a comprehensive framework for WEF coupling coordination was constructed,and the relationship and mechanism between them were analyzed theoretically.Then,we investigated the spatiotemporal characteristics and driving mechanisms of the coupling coordination degree(CCD)with a composite evaluation method,coupling coordination degree model,spatial statistical analysis,and multiscale geographic weighted regression.Finally,policy implications were discussed to promote the coordinated development of the WEF system.The results showed that:1)WEF subsystems showed a significant imbalance of spatial pattern and diversity in temporal changes;2)the CCD for the WEF system varied little and remained at moderate coordination.Areas with moderate coordination have increased,while areas with superior coordination and mild disorder have decreased.In addition,the spatial clustering phenomenon of the CCD was significant and showed obvious characteristics of polarization;and 3)the action of each factor is self-differentiated and regionally variable.For different factors,GDP per capita was of particular importance,which contributed most to the regional development’s coupling coordination.For different regions,GDP per capita,average yearly precipitation,population density,and urbanization rate exhibited differences in geographical gradients in an east-west direction.The conclusion can provide references for regional resource allocation and sustainable development by enhancing WEF system utilization efficiency. 展开更多
关键词 water-energy-food(WEF) comprehensive framework coupling coordination relationship driving mechanism yellow river basin China
下载PDF
Initiatives to clarify mechanisms of hydrological evolution in human-influenced Yellow River Basin 被引量:2
6
作者 Li-liang Ren Shan-shui Yuan +6 位作者 Xiao-li Yang Shan-hu Jiang Gui-bao Li Qiu-an Zhu Xiu-qin Fang Yi Liu Yi-qi Yan 《Water Science and Engineering》 EI CAS CSCD 2023年第2期117-121,共5页
Significant changes in water cycle elements/processes have created serious challenges to regional sustainability and high-quality development in the Yellow River Basin in China.It is necessary to investigate the impac... Significant changes in water cycle elements/processes have created serious challenges to regional sustainability and high-quality development in the Yellow River Basin in China.It is necessary to investigate the impacts of climate change and human activities on hydrological evolution and disaster risk from a holistic perspective of the basin.This study developed initiatives to clarify the mechanisms of hydrological evolution in the human-influenced Yellow River Basin.The proposed research method includes:(1)a tool to simulate multiple factors and a multi-scale water cycle using a grid-based spatiotemporal coupling approach,and(2)a new algorithm to separate the responses of the water cycle to climate change and human impacts,and de-couple the eco-environmental effects using artificial intelligence techniques.With this research framework,key breakthroughs are expected to be made in the understanding of the impacts of land cover change on the water cycle and blue/green water redirection.The outcomes of this research project are expected to provide theoretical support for ecological protection and water governance in the basin. 展开更多
关键词 Climate change Human activities Hydrological evolution Runoff change yellow river basin
下载PDF
Rural Domestic Sewage Treatment Model: Case Study Based on Dongying Section of the Yellow River Basin
7
作者 Shan Zhang Yu Wang Xiujuan Wang 《Journal of Environmental Protection》 CAS 2023年第3期172-184,共13页
The 20<sup>th</sup> National Congress of the Communist Party of China proposed to promote the improvement of urban and rural living environment and build livable and workable villages and beautiful village... The 20<sup>th</sup> National Congress of the Communist Party of China proposed to promote the improvement of urban and rural living environment and build livable and workable villages and beautiful villages. The development and challenges of rural domestic sewage treatment coexist. Based on the field investigation of 15 administrative villages in 3 districts and counties of Dongying City, there is a big gap between the development status of rural domestic sewage treatment and expectations. Investigate rural domestic sewage treatment cases in-depth, and condense four modes of primitive, developmental, mature and advanced in a variety of different rural domestic sewage treatment models for discussion, among which, the village sewage treatment work under the mature mode has achieved remarkable results, and is at the forefront of the current rural domestic sewage treatment. Through the multi-case analysis method, the practical dilemma of sewage treatment in different models of villages is summarized, and the feasible improvement path is explored, which contributes to the ecological protection and high-quality development of Dongying and the Yellow River Basin. 展开更多
关键词 Rural Domestic Sewage Human Settlements Ecological Protection and High-Quality Development of the yellow river basin
下载PDF
Evaluation of Water Resources Carrying Capacity in Gansu Section of Yellow River Basin Based on Fuzzy Comprehensive Evaluation Model
8
作者 Shuanbao LIN 《Meteorological and Environmental Research》 CAS 2023年第4期42-45,49,共5页
As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically ev... As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically evaluate the water resources carrying capacity is the premise to improve the regional water resources carrying capacity and ensure the regional water security.The Gansu section of the Yellow River basin is an important water conservation and recharge area.Whether the water resources in this area can ensure the normal operation of the ecosystem and whether it can carry the sustainable development of social economy is the key to realize the high-quality development of the Yellow River basin.In this study,from the three dimensions of water consumption per capita,water consumption of 10000 yuan GDP and ecological water use rate,by constructing the evaluation index system and index grading standard of water resources carrying capacity,the fuzzy comprehensive evaluation model was used to evaluate the water resources carrying capacity of Gansu section of the Yellow River Basin,in order to provide theoretical decision-making basis for the comprehensive development,utilization and planning management of water resources in Gansu section of the Yellow River basin and even the whole basin,and help the high-quality development of the Yellow River basin. 展开更多
关键词 Fuzzy comprehensive evaluation model Water resources carrying capacity EVALUATION yellow river basin Gansu section
下载PDF
Analysis on Formation Reason of a Squall Line Weather in the Yellow River and Huaihe River Basins
9
作者 ZHANG Yu-feng DING Zhi-ying HUANG Xian-cheng 《Meteorological and Environmental Research》 2012年第9期11-14,共4页
关键词 Squall line Formation reason of the weather yellow river and huaihe river basins China
下载PDF
Comparisons of Simulations of Soil Moisture Variations in the Yellow River Basin Driven by Various Atmospheric Forcing Data Sets 被引量:17
10
作者 李明星 马柱国 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第6期1289-1302,共14页
Based on station observations, The European Centre for Medium-Range Weather Forecasts reanalysis (ERA40), the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) rean... Based on station observations, The European Centre for Medium-Range Weather Forecasts reanalysis (ERA40), the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and Princeton University's global meteorological forcing data set (Princeton), four atmospheric forcing fields were constructed for use in driving the Community Land Model version 3.5 (CLM3.5). Simulated soil moisture content throughout the period 1951-2000 in the Yellow River basin was validated via comparison with corresponding observations in the upper, middle, and lower reaches. The results show that CLM3.5 is capable of reproducing not only the characteristics of intra-annual and annual variations of soil moisture, but also long-term variation trends, with different statistical significance in the correlations between the observations and simulations from different forcing fields in various reaches. The simulations modeled with station-based atmospheric forcing fields are the most consistent with observed soil moisture, and the simulations based on the Princeton data set are the second best, on average. The simulations from ERA40 and NCEP/NCAR are close to each other in quality, but comparatively worse to the other sources of forcing information that were evaluated. Regionally, simulations are most consistent with observations in the lower reaches and less so in the upper reaches, with the middle reaches in between. In addition, the soil moisture simulated by CLM3.5 is systematically greater than the observations in the Yellow River basin. Comparisons between the simulations by CLM3.5 and CLM3.0 indicate that simulation errors are primarily caused by deficiencies within CLM3.5 and are also associated with the quality of atmospheric forcing field applied. 展开更多
关键词 soil moisture CLM3.5 multiple forcing fields the yellow river basin
下载PDF
Methodology to determine regional water demand for instream flow and its application in the Yellow River Basin 被引量:7
11
作者 ZHANG Yuan YANG Zhi-feng Wang Xi-qin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第5期1031-1039,共9页
In order to realistically reflect the difference between regional water demand for instream flow and river ecological water demand as well as to resolve the problem that water demand may be counted repeatedly, a conce... In order to realistically reflect the difference between regional water demand for instream flow and river ecological water demand as well as to resolve the problem that water demand may be counted repeatedly, a concept of regional water demand for minimum instream flow have been developed. The concept was used in the process of determining river functions and calculating ecological water demand for a river. The Yellow River watershed was used to validate the calculation methodology for regional water demand. CaIculation results indicate that there are significant differences in water demands among the different regions. The regional water demand at the downstream of the Yellow River is the largest about 14.893 × 10^9 m^3/a. The regional water demand of upstream, Lanzhou-Hekou section is the smallest about -5.012 × 10^9 m^3/a. The total ecological water demand of the Yellow River Basin is 23.06 × 10^9 m^3/a, about the 39% of surface water resources of the water resources should not exceed 61% in the Yellow River Basin. Yellow River Basin. That means the maximum available surface The regional river ecological water demands at the Lower Section of the Yellow River and Longyangxia-Lanzhou Section exceed the surface water resources produced in its region and need to be supplemented from other regions through the water rational planning of watershed water resources. These results provides technical basis for rational plan of water resources of the Yellow River Basin. 展开更多
关键词 regional water demand instream flow environmental flow METHODOLOGY the yellow river basin
下载PDF
Yellow River Basin management and current issues 被引量:9
12
作者 吴保生 王兆印 李昌志 《Journal of Geographical Sciences》 SCIE CSCD 2004年第z1期29-37,共9页
Soil loss, water shortage, flooding, sedimentation and water pollution are the major problems affecting the sustainable development of the Yellow River basin. Their impacts and management strategies are briefly discus... Soil loss, water shortage, flooding, sedimentation and water pollution are the major problems affecting the sustainable development of the Yellow River basin. Their impacts and management strategies are briefly discussed in this paper. The integrated management strategy, which includes one ultimate goal, four standards, nine countermeasures, and the concept of 'three Yellow Rivers,' is a contemporary management strategy and represents the vision of the Chinese government and engineers for the sustainable development of the Yellow River basin. 展开更多
关键词 yellow river basin management three yellow rivers
下载PDF
Distributed modeling of direct solar radiation on rugged terrain of the Yellow River Basin 被引量:4
13
作者 ZENG Yan QIU Xinfa +1 位作者 LIU Changming JIANG Aijun 《Journal of Geographical Sciences》 SCIE CSCD 2005年第4期439-447,共9页
Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data... Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data and meteorological observations, a distributed model for calculating DSR over rugged terrain is developed. This model gives an all-sided consideration on factors influencing th a resolution of 1 km × 1 km for thDSR. Using the developed model, normals of annual DSR quantity wie Yellow River Basin was generated, with DEM data as the general characterization of terrain. Characteristics of DSR quantity influenced by geographic and topographic factors over rugged terrain were analyzed thoroughly. Results suggest that: influenced by local topographic factors, i.e. azimuth, slope and so on, and annual DSR quantity over mountainous area has a clear spatial difference; annual DSR quantity of sunny slope (or southern slope) of mountains is obviously larger than that of shady slope (or northern slope). The calculated DSR quantity of the Yellow River Basin is provided in the same way as other kinds of spatial information and can be employed as basic geographic data for relevant studies as well. 展开更多
关键词 direct solar radiation (DSR) rugged terrain digital elevation model (DEM) distributed model yellow river basin
下载PDF
GRACE-based estimates of water discharge over the Yellow River basin 被引量:4
14
作者 Qiong Li Bo Zhong +1 位作者 Zhicai Luo Chaolong Yao 《Geodesy and Geodynamics》 2016年第3期187-193,共7页
As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS... As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP, discharge of the Yellow River basin are estimated from the water balance equation. While comparing the results with discharge from GLDAS model and in situ measurements, the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin. 展开更多
关键词 GRACE Gravity field model Terrestrial water storage Water discharge yellow river basin
下载PDF
Capability of TMPA products to simulate streamflow in upper Yellow and Yangtze River basins on Tibetan Plateau 被引量:3
15
作者 Zhen-chun HAO Kai TONG +1 位作者 Xiao-li LIU Lei-lei ZHANG 《Water Science and Engineering》 EI CAS CSCD 2014年第3期237-249,共13页
Due to the high elevation, complex terrain, severe weather, and inaccessibility, direct meteorological observations do not exist over large portions of the Tibetan Plateau, especially the western part of it. Satellite... Due to the high elevation, complex terrain, severe weather, and inaccessibility, direct meteorological observations do not exist over large portions of the Tibetan Plateau, especially the western part of it. Satellite rainfall estimates have been very important sources for precipitation information, particularly in rain gauge-sparse regions. In this study, Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products 3B42, RTV5V6, and RTV7 were evaluated for their applicability to the upper Yellow and Yangtze River basins on the Tibetan Plateau. Moreover, the capability of the TMPA products to simulate streamflow was also investigated using the Variable Infiltration Capacity (VIC) semi-distributed hydrological model. Results show that 3B42 performs better than RTVSV6 and RTV7, based on verification of the China Meteorological Administration (CMA) observational precipitation data. RTVSV6 can roughly capture the spatial precipitation pattern but overestimation exists throughout the entire study region. The anticipated improvements of RTV7 relative to RTVSV6 have not been realized in this study. Our results suggest that RTV7 significantly overestimates the precipitation over the two river basins, though it can capture the seasonal cycle features of precipitation. 3B42 shows the best performance in streamflow simulation of the abovementioned satellite products. Although involved in gauge adjustment at a monthly scale, 3B42 is capable of daily streamflow simulation. RTV5V6 and RTV7 have no capability to simulate streamflow in the upper Yellow and Yangtze River basins. 展开更多
关键词 TMPA CMA precipitation data VIC hydrological model streamflow simulation upper yellow and Yangtze river basins
下载PDF
Synergistic effects of multiple driving factors on the runoff variations in the Yellow River Basin,China 被引量:4
16
作者 WANG Junjie SHI Bing +2 位作者 ZHAO Enjin CHEN Xuguang YANG Shaopeng 《Journal of Arid Land》 SCIE CSCD 2021年第8期835-857,共23页
River runoff plays an important role in watershed ecosystems and human survival,and it is controlled by multiple environmental factors.However,the synergistic effects of various large-scale circulation factors and met... River runoff plays an important role in watershed ecosystems and human survival,and it is controlled by multiple environmental factors.However,the synergistic effects of various large-scale circulation factors and meteorological factors on the runoff on different time-frequency scales have rarely been explored.In light of this,the underlying mechanism of the synergistic effects of the different environmental factors on the runoff variations was investigated in the Yellow River Basin of China during the period 1950-2019 using the bivariate wavelet coherence(WTC)and multiple wavelet coherence(MWC)methods.First,the continuous wavelet transform(CWT)method was used to analyze the multiscale characteristics of the runoff.The results of the CWT indicate that the runoff exhibited significant continuous or discontinuous annual and semiannual oscillations during the study period.Scattered inter-annual time scales were also observed for the runoff in the Yellow River Basin.The meteorological factors better explained the runoff variations on seasonal and annual time scales.The average wavelet coherence(AWC)and the percent area of the significant coherence(PASC)between the runoff and individual meteorological factors were 0.454 and 19.89%,respectively.The circulation factors mainly regulated the runoff on the inter-annual and decadal time scales with more complicated phase relationships due to their indirect effects on the runoff.The AWC and PASC between the runoff and individual circulation factors were 0.359 and 7.31%,respectively.The MWC analysis revealed that the synergistic effects of multiple factors should be taken into consideration to explain the multiscale characteristic variations of the runoff.The AWC or MWC ranges were 0.320-0.560,0.617-0.755,and 0.819-0.884 for the combinations of one,two,and three circulation and meteorological factors,respectively.The PASC ranges were 3.53%-33.77%,12.93%-36.90%,and 20.67%-39.34%for the combinations one,two,and three driving factors,respectively.The combinations of precipitation,evapotranspiration(or the number of rainy days),and the Arctic Oscillation performed well in explaining the variability in the runoff on all time scales,and the average MWC and PASC were 0.847 and 28.79%,respectively.These findings are of great significance for improving our understanding of hydro-climate interactions and water resources prediction in the Yellow River Basin. 展开更多
关键词 synergistic effects PRECIPITATION runoff variations atmospheric circulations multiple wavelet coherence yellow river basin
下载PDF
Evaluation of latest TMPA and CMORPH satellite precipitation products over Yellow River Basin 被引量:2
17
作者 Shan-hu Jiang Meng Zhou +2 位作者 Li-liang Ren Xue-rong Cheng Peng-ju Zhang 《Water Science and Engineering》 EI CAS CSCD 2016年第2期87-96,共10页
The main objective of this study was to evaluate four latest global high-resolution satellite precipitation products(TMPA 3B42 RT, CMORPH,TMPA 3B42V7, and CMORPH_adj) against gauge observations of the Yellow River Bas... The main objective of this study was to evaluate four latest global high-resolution satellite precipitation products(TMPA 3B42 RT, CMORPH,TMPA 3B42V7, and CMORPH_adj) against gauge observations of the Yellow River Basin from March 2000 to December 2012. The assessment was conducted with several commonly used statistical indices at daily and monthly scales. Results indicate that 3B42V7 and CMORPH_adj perform better than the near real-time products(3B42RT and CMORPH), particularly the 3B42V7 product. The adjustment by gauge data significantly reduces the systematic biases in the research products. Regarding the near real-time datasets, 3B42 RT overestimates rainfall over the whole basin, while CMORPH presents a mixed pattern with negative and positive values of relative bias in low- and high-latitude regions,respectively, and CMORPH performs better than 3B42 RT on the whole. According to the spatial distribution of statistical indices, these values are optimized in the southeast and decrease toward the northwest, and the trend is similar for the spatial distribution of the mean annual precipitation during the period from 2000 to 2012. This study also reveals that all the four products can effectively detect rainfall events. This study provides useful information about four mainstream satellite products in the Yellow River Basin, and the findings can facilitate the use of global precipitation measurement(GPM) data in the future. 展开更多
关键词 SATELLITE PRECIPITATION TMPA CMORPH yellow river basin
下载PDF
Formation Mechanisms and Geomorphic Evolution of the Erlian Mudflow Fans, Eastern Guide Basin of the Upper Reaches of Yellow River 被引量:2
18
作者 ZHAO Wuji YIN Zhiqiang +1 位作者 XU Qiang QIN Xiaoguang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期578-589,共12页
Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using fie... Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred. 展开更多
关键词 the upper reaches of yellow river Guide basin mud-flow fan forming mechanism geomorphic evolution
下载PDF
Numerical Simulation of the Heavy Rainfall in the Yangtze-Huai River Basin during Summer 2003 Using the WRF Model 被引量:13
19
作者 LIU Hong-Bo 《Atmospheric and Oceanic Science Letters》 2012年第1期20-25,共6页
In this study,a 47-day regional climate simulation of the heavy rainfall in the Yangtze-Huai River Basin during the summer of 2003 was conducted using the Weather Research and Forecast(WRF) model.The simulation reprod... In this study,a 47-day regional climate simulation of the heavy rainfall in the Yangtze-Huai River Basin during the summer of 2003 was conducted using the Weather Research and Forecast(WRF) model.The simulation reproduces reasonably well the evolution of the rainfall during the study period's three successive rainy phases,especially the frequent heavy rainfall events occurring in the Huai River Basin.The model captures the major rainfall peak observed by the monitoring stations in the morning.Another peak appears later than that shown by the observations.In addition,the simulation realistically captures not only the evolution of the low-level winds but also the characteristics of their diurnal variation.The strong southwesterly(low-level jet,LLJ) wind speed increases beginning in the early evening and reaches a peak in the morning;it then gradually decreases until the afternoon.The intense LLJ forms a strong convergent circulation pattern in the early morning along the Yangtze-Huai River Basin.This pattern partly explains the rainfall peak observed at this time.This study furnishes a basis for the further analysis of the mechanisms of evolution of the LLJ and for the further study of the interactions between the LLJ and rainfall. 展开更多
关键词 淮河流域 数值模拟 WRF模式 长江 暴雨 低空急流 夏季 演变机制
下载PDF
Eco-Environmental Vulnerability Evaluation in the Yellow River Basin,China 被引量:51
20
作者 WANG Si-Yuan LIU Jing-Shi YANG Cun-Jian 《Pedosphere》 SCIE CAS CSCD 2008年第2期171-182,共12页
Using remote sensing(RS)data and geographical information system(GIS),eco-environmental vulnerability and its changes were analyzed for the Yellow River Basin,China.The objective of this study was to improve our under... Using remote sensing(RS)data and geographical information system(GIS),eco-environmental vulnerability and its changes were analyzed for the Yellow River Basin,China.The objective of this study was to improve our understanding of eco-environmental changes so that a strategy of sustainable land use could be established.An environmental numerical model was developed using spatial principal component analysis(SPCA)model.The model contains twelve factors that include variables of land use,soil erosion,topography,climate,and vegetation.Using this model,synthetic eco- environmental vulnerability index(SEVI)was computed for 1990 and 2000 for the Yellow River Basin.The SEVI was classified into six levels,potential,slight,light,medium,heavy,and very heavy,following the natural breaks classification. The eco-environmental vulnerability distribution and its changes over the ten years from 1990 to 2000 were analyzed and the driving factors of eco-environmental changes were investigated.The results show that the eco-environmental vulnerability in the study area was at medium level,and the eco-environmental quality had been gradually improved on the whole.However,the eco-environmental quality had become worse over the ten years in some regions.In the study area,population growth,vegetation degradation,and governmental policies for eco-environmental protection were found to be the major factors that caused the eco-environmental changes over the ten years. 展开更多
关键词 生态环境 弱点 地理信息系统 遥感
下载PDF
上一页 1 2 175 下一页 到第
使用帮助 返回顶部