期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Preparation and Bloating Mechanism of Porous Ultra-lightweight Ceramsite by Dehydrated Sewage Sludge and Yellow River Sediments 被引量:7
1
作者 岳东亭 岳钦艳 +6 位作者 GAO Baoyu HE Hongtao YU Hui SUN Shenglei LI Qian WANG Yan ZHAO Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1129-1135,共7页
To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments additi... To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments addition on the characteristics of ceramsite were investigated. Ceramsite with different Yellow River sediments additions was characterized using thermal analysis, X-ray diffraction, morphological structures analyses, pore size distributions and porosity analyses. Chemical components, especially ratios of Si O2 + Al2O3/Flux, were used to explain the glassy shell formation, physical properties and pores distribution of ultralightweight ceramsite; physical forces for instance expansion force and frictional resistance which combined with Si O2 + Al2O3/Flux ratios were used to explain the bloating mechanism. Results showed that the maximum addition of Yellow River sediments for making ultra-lightweight ceramsite was 35%. Macropores(between 0.226 μm and 0.554 μm) of ultra-lightweight ceramsite were dominant in the pore structures of ultra-lightweight ceramsite and its porosity was up to 67.7%. Physical force of expansion force was constant with the variation of Yellow River sediments content and physical force of frictional resistance was decreased with the increase of Yellow River sediments addition. The relationship between expansion and frictional resistance could determine the expansion rate of ceramsite. Larger pores inside the ceramsite bodies could be obtained as Yellow River sediments additions ranged from 10% to 30%. Ceramsite with higher Yellow River sediments additions of 40%(Si O2 + Al2O3/Flux ratios 4.25) became denser and have lower porosity. Crystal components analysis proved that the sintering process made some components of raw materials transfer into other crystals having better thermostability. 展开更多
关键词 yellow river sediments dehydrated sewage sludge ultra-lightweight ceramsite bloating mechanism
下载PDF
Hydraulic characteristics and vegetation performance of the Yellow River sediment modified by biochar 被引量:1
2
作者 Baoyong Liu Mingji Liao +2 位作者 Yong Wan Xingxing He Dongli Wang 《Biogeotechnics》 2024年第2期1-11,共11页
The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holdin... The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holding capacity and needs to be modified urgently.Therefore,two types of biochar,namely rice husk biochar(RHB)and coconut shell biochar(CSB),were utilized in this study to modify the YRS and compared with rice husk ash(RHA).Some engineering properties of the modified YRS(MYRS),including pore structure,water retention,permeability,and vegetation performance,were investigated by considering the effects of biochar types and dosages.Results showed that the addition of the three materials decreased the bulk density of the YRS and increased the volume of extremely micro pore(d<0.3µm),as well as the effective porosity and capillary porosity,thus contributed to an increase in the water-holding capacity of the sediment.Among the three conditioners,RHB is optimal choice for improving the water-holding capacity of YRS.Furthermore,the effect becomes more pronounced with increasing application rates.With the addition of the three materials,the permeability coefficients of MYRS gradually decreased,while the water retention rate during evaporation significantly increased.The pot experiment showed that the three conditioners all had significant promoting effect on the growth of oats.In particular,compared to plain soil,the total biomass of oats grown for 21 days increased by 17.46%,32.14%,and 49.60%after adding 2%,4%,and 8%RHB,respectively.This study introduces a new approach for using YRS as planting soil in arid and semi-arid areas of China to facilitate mine ecological restoration. 展开更多
关键词 Biochar modification yellow river sediment Soil water-holding capacity Permeability coefficient Vegetation performance
下载PDF
Impact of interlayer on moisture characteristics of reclaimed soil backfilled with Yellow River sediments 被引量:1
3
作者 Xiaotong Wang Zhenqi Hu Yusheng Liang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第1期153-159,共7页
Underground coal mining causes land subsidence,and backfilling with Yellow River sediment is an effective reclamation technology to restore farmland in China.To date,two-layer soil reconstructed(TSR)for subsided land ... Underground coal mining causes land subsidence,and backfilling with Yellow River sediment is an effective reclamation technology to restore farmland in China.To date,two-layer soil reconstructed(TSR)for subsided land reclamation resulted in poor capacity to retain water.To solve this problem,multi-layered soil reconstructed(MSR),sandwiching soil interlayers between sediment,was developed as a new reclamation strategy with Yellow River sediment.In order to evaluate the impact of soil interlayer on moisture characteristics,laboratory experiments of infiltration and evaporation were conducted.Two control treatments(CK1,CK2)and four experimental treatments(T1-T4)were designed.CK1 was undamaged farmland,CK2 was conventional reconstructed two-layers soil profile(filled sediment with 40 cm soil cover).T1-T4 were multiple-layers soil profiles sandwiching different structures of soil interlayers between sediment layers.The results indicated that putting interlayers into sediment reduced water leakage and water evaporation,improved the water-holding capacity of conventional two-layer soil profiles.The total thickness of soil interlayers of 30 cm(T3 and T4)was better than 20 cm(T1 and T2)and two soil interlayers(T2)were better than one(T1)on water-holding capacity.Furthermore,the best reconstructed soil profile was T3,sandwiched two soil interlayer and the first thickness was 20 cm.This treatment had the greatest improvement on soil water holding capacity with an increase of 49.14%compared to CK2 at the end of the evaporation and was closest to CK1(402.31 mm).This study provided experimental evidence that compares with TSR,MRS improved the moisture characteristics of backfilling with Yellow River sediment. 展开更多
关键词 land reclamation Mining subsidence yellow river sediment multi-layered soil reconstructed moisture characteristics
原文传递
Assessment of several typical physical properties of reclaimed farmland filled with Yellow River sediment in Jining, China 被引量:6
4
作者 Zhenqi Hu Peijun Wang +2 位作者 Russell S. Yost Fang Shao Linghua Duo 《International Journal of Coal Science & Technology》 EI 2018年第1期36-46,共11页
Land subsidence caused by underground coal mining is one of the most prominent environment problems in China. The reclamation of mining subsidence land with Yellow River sediment was considered to be feasible, but its... Land subsidence caused by underground coal mining is one of the most prominent environment problems in China. The reclamation of mining subsidence land with Yellow River sediment was considered to be feasible, but its effectiveness needs to be verified. An integrated reclamation technology with Yellow River sediment was evaluated using a comparison of actual crop production soil profile analysis in Jining City, China. The results indicated that reconstructed soil profile of the reclaimed farmland was less effective in retaining water and in supporting plant growth than that of the unaltered farmland. Some measures are proposed, such as reducing the drainage velocity to allow sedimentation and retention of the clay and silt, changing the techniques of filling the Yellow River sediment and increasing the organic matter content in the soil layers to improve the capacity to retain water in the reclaimed farmland. 展开更多
关键词 yellow river sediment Mining subsidence land Land reclamation Soil physical properties Available water-holding capacity
下载PDF
Diagnostic experiments for transport mechanisms of suspended sediment discharged from the Yellow River in the Bohai Sea 被引量:3
5
作者 LI Guosheng XUE Xinghua +2 位作者 LIU Ying WANG Hailong LIAO Heping 《Journal of Geographical Sciences》 SCIE CSCD 2010年第1期49-63,共15页
Five diagnostic experiments with a 3D baroclinic hydrodynamic and sediment transport model ECOMSED in couple with the third generation wave model SWAN and the Grant-Madsen bottom boundary layer model driven by the mon... Five diagnostic experiments with a 3D baroclinic hydrodynamic and sediment transport model ECOMSED in couple with the third generation wave model SWAN and the Grant-Madsen bottom boundary layer model driven by the monthly sediment load of the Yellow River, were conducted to separately diagnose effects of different hydrodynamic factors on transport of suspended sediment discharged from the Yellow River in the Bohai Sea. Both transport and spatio-temporal distribution of suspended sediment concentration in the Bohai Sea were numerially simulated. It could be from the Yellow River cannot be delivered in concluded that suspended sediment discharged long distance under the condition of tidal current. Almost all of sediments from the Yellow River are deposited outside the delta under the condition of wind-driven current, and only very small of them are transported faraway. On the basis of wind forcing, sediments from the Yellow River are mainly transported north-northwestward, and others which are first delivered to the Laizhou Bay are continuously moved northward. An obvious 3D structure characteristic of sediment transport is produced in the wind-driven and tide-induced residual circulation condition. Transport patterns at all layers are generally consistent with circulation structure, but there is apparent deviation between the depth-averaged sediment flux and the circulation structure. The phase of temporal variation of sediment concentration is consistent with that of the bottom shear stress, both of which are proved to have a ten-day cycle in wave and current condition. 展开更多
关键词 sediment from the yellow river suspended transport dynamic mechanism diagnostic experiment
下载PDF
Mechanical Property and Microstructure of Alkali-activated Yellow River Sediment-Coal Slime Ash Composites 被引量:1
6
作者 李高年 王宝民 +2 位作者 LIU Hui SONG Wanzeng HAN Junnan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1080-1086,共7页
This work focuses on the production of a new composite material using Yellow River sediment and coal slime ash via alkali-activating method. XRD, FTIR and SEM/EDS were used to characterize the alkali-activated product... This work focuses on the production of a new composite material using Yellow River sediment and coal slime ash via alkali-activating method. XRD, FTIR and SEM/EDS were used to characterize the alkali-activated products and microstructure of the composite material. Compressive strength was tested to characterize the mechanical property of the composite material. It is found that the compressive strength of the Yellow River sediment-coal slime ash composites increases as the added Ca(OH)_2 content grows. The compressive strength increases fast in the early stage but slowly after 28 days. The strength of the composites can be significantly improved via the addition of small amount of Na OH and gypsum. The products(C-S-H, ettringite and CaCO_3), especially C-S-H, make much contribution to the enhancement of strength. The highest strength of the composites can reach 14.4 MPa after 90 days curing with 5% Ca(OH)_2, 0.2% NaOH and 7.5% gypsum. The improved properties of the composites show great potential of utilizing Yellow River sediment for inexpensive construction materials. 展开更多
关键词 yellow river sediment coal slime ash alkali activation compressive strength microstructure
下载PDF
Numerical simulations of flow and sediment transport within the Ning-Meng reach of the Yellow River,northern China 被引量:2
7
作者 DOU Shentang YU Xin +1 位作者 DU Heqiang ZHANG Fangxiu 《Journal of Arid Land》 SCIE CSCD 2017年第4期591-608,共18页
Effective management of a river reach requires a sound understanding of flow and sediment transport generated by varying natural and artificial runoff conditions. Flow and sediment transport within the Ning-Meng reach... Effective management of a river reach requires a sound understanding of flow and sediment transport generated by varying natural and artificial runoff conditions. Flow and sediment transport within the Ning-Meng reach of the Yellow River(NMRYR), northern China are controlled by a complex set of factors/processes, mainly including four sets of factors:(1) aeolian sediments from deserts bordering the main stream;(2) inflow of water and sediment from numerous tributaries;(3) impoundment of water by reservoir/hydro-junction; and(4) complex diversion and return of irrigation water. In this study, the 1-D flow & sediment transport model developed by the Yellow River Institute of Hydraulic Research was used to simulate the flow and sediment transport within the NMRYR from 2001 to 2012. All four sets of factors that primarily control the flow and sediment transport mentioned above were considered in this model. Compared to the measured data collected from the hydrological stations along the NMRYR, the simulated flow and sediment transport values were generally acceptable, with relative mean deviation between measured and simulated values of 〈15%. However, simulated sediment concentration and siltation values within two sub-reaches(i.e., Qingtongxia Reservoir to Bayan Gol Hydrological Station and Bayan Gol Hydrological Station to Toudaoguai Hydrological Station) for some periods exhibited relatively large errors(the relative mean deviations between measured and simulated values of 18% and 25%, respectively). These errors are presumably related to the inability to accurately determine the quantity of aeolian sediment influx to the river reach and the inflow of water from the ten ephemeral tributaries. This study may provide some valuable insights into the numerical simulations of flow and sediment transport in large watersheds and also provide a useful model for the effective management of the NMRYR. 展开更多
关键词 numerical simulation flow and sediment transport 1-D flow sediment model yellow river
下载PDF
Understanding the influencing factors and evolving trends of the Yellow River Water-Sediment Regulation System from a system perspective
8
作者 Zhiwei CAO Yuansheng ZHANG +2 位作者 Huanfa CHEN Chaoqun LI Yuan LUO 《Frontiers of Engineering Management》 CSCD 2024年第3期528-541,共14页
Understanding the influencing factors and the evolving trends of the Water-Sediment Regulation System(WSRS)is vital for the protection and management of the Yellow River.Past studies on WSRS have been limited in focus... Understanding the influencing factors and the evolving trends of the Water-Sediment Regulation System(WSRS)is vital for the protection and management of the Yellow River.Past studies on WSRS have been limited in focus and have not fully addressed the complete engineering control system of the basin.This study takes a holistic view,treating sediment management in the Yellow River as a dynamic and ever-evolving complex system.It merges concepts from system science,information theory,and dissipative structure with practical efforts in sediment engineering control.The key findings of this study are as follows:between 1990 and 2019,the average Yellow River Sediment Regulation Index(YSRI)was 55.99,with the lowest being 50.26 in 1990 and the highest being 61.48 in 2019;the result indicates that the WSRS activity decreased,yet it fluctuated,gradually approaching the critical threshold of a dissipative structure. 展开更多
关键词 yellow river Water-Sediment Regulation System yellow river Sediment Regulation Index system perspective sustainable management.
原文传递
Zoning of land reclamation in coal mining area and new progresses for the past 10 years 被引量:31
9
作者 Wu Xiao Zhenqi Hu Yanhua Fu 《International Journal of Coal Science & Technology》 EI CAS 2014年第2期177-183,共7页
Coal mining disturbed land is the main sources of land reclamation in China.With the rapid increase of economy and coal production,more and more land has been disturbed by construction and coal mining;thus,land reclam... Coal mining disturbed land is the main sources of land reclamation in China.With the rapid increase of economy and coal production,more and more land has been disturbed by construction and coal mining;thus,land reclamation has become highlights in the past 10 years,and China is boosting land reclamation in mining areas.Disturbance characteristics vary from region to region,according to natural and geological conditions,coal mining area land reclamation was divided into 3 zones,which are eastern,western and southern.Reclamation strategies are focused on prime farmland protection in eastern and ecological restoration in western and southern zones,respectively.Several innovative reclamation technologies and theories for the past 10 years were introduced in this paper,including concurrent mining and reclamation,Yellow river sediments backfilling,self-reclamation,and topsoil alternatives in opencast mines.Besides,in the government regulation and legal system building respect,several important laws and regulations were issued and implemented in the past 5 years,promoting land reclamation management and supervision greatly.Land reclamation is and will still be one of the most important parts of coal industry in the future,and more efforts and funds are expected to get involved. 展开更多
关键词 Land reclamation ZONING Concurrent mining and reclamation yellow river sediments Self-reclamationLand reclamation regulation
下载PDF
Spatial variation and driving mechanism of soil organic carbon components in the alluvial/sedimentary zone of the Yellow River 被引量:3
10
作者 LI Guodong ZHANG Junhua +3 位作者 ZHU Lianqi TIAN Huiwen SHI Jiaqi REN Xiaojuan 《Journal of Geographical Sciences》 SCIE CSCD 2021年第4期535-550,共16页
Alluviation and sedimentation of the Yellow River are important factors influencing the surface soil structure and organic carbon content in its lower reaches.Selecting Kaifeng and Zhoukou as typical cases of the Yell... Alluviation and sedimentation of the Yellow River are important factors influencing the surface soil structure and organic carbon content in its lower reaches.Selecting Kaifeng and Zhoukou as typical cases of the Yellow River flooding area,the field survey,soil sample collection,laboratory experiment and Geographic Information System(GIS)spatial analysis methods were applied to study the spatial distribution characteristics and change mechanism of organic carbon components at different soil depths.The results revealed that the soil total organic carbon(TOC),active organic carbon(AOC)and nonactive organic carbon(NOC)contents ranged from 0.05–30.03 g/kg,0.01–8.86 g/kg and 0.02–23.36 g/kg,respectively.The TOC,AOC and NOC contents in the surface soil layer were obviously higher than those in the lower soil layer,and the sequence of the content and change range within a single layer was TOC>NOC>AOC.Geostatistical analysis indicated that the TOC,AOC and NOC contents were commonly influenced by structural and random factors,and the influence magnitudes of these two factors were similar.The overall spatial trends of TOC,AOC and NOC remained relatively consistent from the 0–20 cm layer to the 20–100 cm layer,and the transition between high-and low-value areas was obvious,while the spatial variance was high.The AOC and NOC contents and spatial distribution better reflected TOC spatial variation and carbon accumulation areas.The distribution and depth of the sediment,agricultural land-use type,cropping system,fertilization method,tillage process and cultivation history were the main factors impacting the spatial variation in the soil organic carbon(SOC)components.Therefore,increasing the organic matter content,straw return,applying organic manure,adding exogenous particulate matter and conservation tillage are effective measures to improve the soil quality and attain sustainable agricultural development in the alluvial/sedimentary zone of the Yellow River. 展开更多
关键词 soil organic carbon yellow river sediment spatial variation driving mechanism cultivation history
原文传递
Impacts of application patterns and incorporation rates of dredged Yellow River sediment on structure and infiltration of saline-alkali soil 被引量:1
11
作者 Kesheng Li Weihang Kong +1 位作者 Wenshuo Xu Chuanxiao Liu 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第4期139-146,共8页
Soil salinization is an issue of global concern.Despite recent evidence indicates that application of sediments into saline-alkali soil in Yellow River Delta as an additive can increase crop yield,its effects on soil ... Soil salinization is an issue of global concern.Despite recent evidence indicates that application of sediments into saline-alkali soil in Yellow River Delta as an additive can increase crop yield,its effects on soil structure and infiltration remain uncertain.In this study,the comprehensively analyses were conducted on the soil infiltration and microstructure of the soil treated with three sediment application layers(surface layer at 0-15 cm,lower layer at 15-30 cm,and plough layer at 0-30 cm)and four sediment incorporation rates(0,2%,5%and 10%),using soil column simulation experiment.Results indicated that the dredged Yellow River sediments can improve the infiltration capacity of saline-alkali soil;and the infiltration capacity increased with the rising sediment incorporation rate under the given application pattern.Compared with the control,applying dredged Yellow River sediments at 10%rate at lower layer and plough layer significantly facilitated the soil infiltration of the saline-alkali soil.Soil macro-porosity for T2,T5 and T10 was 26%,52%and 158%more than that for the control,respectively.This phenomenon was attributed to the increased soil macro-porosity,due to the improved soil microstructure with the incorporation of sediment into the saline-alkali soil.Moreover,the cumulative infiltration was fitted better with Kostiakov infiltration model than Horton and Philip models. 展开更多
关键词 saline-alkali soil yellow river sediment soil infiltration MICROSTRUCTURE incorporation rate application pattern
原文传递
Sediment settlement rate and consolidation time of flling reclamation in coal mining subsidence land 被引量:1
12
作者 Linghua Duo Zhenqi Hu +1 位作者 Kun Yang Yanan Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第3期232-246,共15页
With the continuous growth of the population and the continuous reduction of cultivated land,China’s food security is greatly threatened.In addition,China’s coal mining has been mainly underground mining,causing lan... With the continuous growth of the population and the continuous reduction of cultivated land,China’s food security is greatly threatened.In addition,China’s coal mining has been mainly underground mining,causing land subsidence and damaging existing cultivated land.This efect intensifes the contradiction between the growth of the risk population and the reduction of cultivated land.The reclamation of mining subsidence land with Yellow River sediment is often used as an efective way to improve the recovery rate of cultivated land.Shortening the reclamation time and realizing continuous flling are signifcant issues.The work presented in this paper studied the sediment settlement rate and consolidation time by combining theory,feld flling and reclamation tests and numerical simulations.A feld flling test study was carried out in the lowlands of Jibeiwang Village,Qihe County,Shandong Province,China.By calculating the drainage consolidation time,the consolidation factor of 0.015656 m^(2)/d,and the time factor for sediment consolidation of 0.575 were determined.The sediment consolidation time for this test was 9.18 days.The calculation of sediment deposition rate and consolidation time is of great practical signifcance to guide the Yellow River sediment flling,realize continuous flling,and save reclamation time and cost. 展开更多
关键词 yellow river sediment Mining subsidence land Filling reclamation Consolidation time
下载PDF
Evaluation of nonwoven geotextile drainage performance and experimental simulation of key processes in Yellow River sediment-backfilled reclaimed coal-mined subsided lands
13
作者 Huang Sun Zhenqi Hu +2 位作者 Deyun Song Shuai Wang Yi Yu 《International Journal of Agricultural and Biological Engineering》 2024年第6期193-201,共9页
The innovative utilization of Yellow River sediment to reclaim coal-mined subsided lands addresses dual environmental challenges by offering a sustainable remediation technique.However,efficient water drainage constit... The innovative utilization of Yellow River sediment to reclaim coal-mined subsided lands addresses dual environmental challenges by offering a sustainable remediation technique.However,efficient water drainage constitutes a significant hurdle in this context.The strategic placement of nonwoven geotextile at the tail end of the fill sections has ameliorated fine sediment loss and drainage efficacy issues.This study assesses various nonwoven geotextile grades for their effectiveness in moisture expulsion,integrating comprehensive evaluations and simulation tests of pivotal processes.The findings reveal that selected nonwoven geotextiles(N1,N2,T1,T2,T3,T4)demonstrate appropriate apparent opening size(AOS)and permeability,coupled with clogging resistance,aligning with theoretical criteria for soil conservation,water permeation,and blockage prevention.Crucial to the nonwoven geotextile’s clogging are factors such as apparent opening size(AOS),thickness,permeability,load capacity,gradient ratio(GR),and sediment retention-all requiring meticulous selection for real-world application.The choice of nonwoven geotextile in the drainage of Yellow River sediment reclaimed lands must hinge on a holistic assessment framework,encompassing retention,permeability,anti-clogging attributes,and additional performance metrics,to ensure that the materials fulfill the specific technical standards while remaining cost-effective.This study provides valuable insights into the selection and application of geotextiles in Yellow River sediment-backfilled reclamation drainage projects,contributing to the advancement of mine ecological restoration practices,particularly in the context of Yellow River sediment-backfilled reclamation projects. 展开更多
关键词 nonwoven geotextile drainage performance yellow river sediment coal-mined subsided land filling reclamation engineering construction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部