期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Promoting hybrid twins structure to reduce yield asymmetry of rolled AZ31 plates by combining side-rolling and torsion 被引量:1
1
作者 Bo Song Meng Wang +4 位作者 Ruolan Shi Zhiwen Du Ning Guo Fang Wang Shengfeng Guo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期2096-2105,共10页
In this work,an as-rolled AZ31 square bar with c-axis//ND(normal direction)texture was used.Side-rolling and reciprocating torsion were performed to treat the bar.Microstructure evolution and tensile-compressive prope... In this work,an as-rolled AZ31 square bar with c-axis//ND(normal direction)texture was used.Side-rolling and reciprocating torsion were performed to treat the bar.Microstructure evolution and tensile-compressive properties were investigated in detail.Initial rolled AZ31 bar exhibits a large yield asymmetry along the rolling direction(RD).Reciprocating torsion can generate extension twins to introduce twin boundaries and twin-texture.The twin structure can reduce yield asymmetry.However,only limited regions in the rolled AZ31 bar can be twinned during torsion.Pre-side-rolling along the transverse direction(TD)can generate two texture components(c-axis//TD texture and c-axis//ND texture)by introducing profuse{10–12}twins.Such dual texture components help increase the regions which are favorable for twinning during torsion.Finally,combining side-rolling and reciprocating torsion generates hybrid{10–12}twins structure on the entire cross-section,resulting in a remarkably low yield asymmetry.The relevant mechanisms were discussed in detail. 展开更多
关键词 AZ31 Square section TORSION Hybrid twins Orientation yield asymmetry
下载PDF
Underlying mechanisms of variation in yield asymmetry and strain hardening behavior of extruded pure Mg with Gd addition
2
作者 Gyo Myeong Lee Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期2165-2181,共17页
Effects of Gd addition on the strain hardening behavior and yield asymmetry of pure Mg are investigated by subjecting extruded pure Mg,Mg–5Gd,and Mg–15Gd(all in wt%)to tension and compression tests along the extrusi... Effects of Gd addition on the strain hardening behavior and yield asymmetry of pure Mg are investigated by subjecting extruded pure Mg,Mg–5Gd,and Mg–15Gd(all in wt%)to tension and compression tests along the extrusion direction(ED).As the amount of Gd added to pure Mg increases,the basal texture tilts toward the ED and the distribution of c-axes of grains becomes randomized.Under tension,the strain hardening rates of all the materials decrease until fracture.However,under compression,the strain hardening rate increases in the early stage of deformation in pure Mg and Mg–5Gd,whereas it continuously decreases in Mg–15Gd.Pure Mg exhibits considerably high tension-compression yield asymmetry,with a compressive yield strength(CYS)to tensile yield strength(TYS)ratio of 0.4.In contrast,Mg–5Gd exhibits excellent yield symmetry with CYS/TYS of 0.9 and Mg–15Gd exhibits reversed yield asymmetry with CYS/TYS of 1.2.Underlying mechanisms of these drastically different Gd-addition-induced deformation behaviors of the materials are discussed in terms of the crystallographic distribution of grains and the relative activation stresses of basal slip,prismatic slip,pyramidal slip,and{10–12}twinning under tension and compression. 展开更多
关键词 Pure Mg Gd addition TEXTURE yield asymmetry Activation stress
下载PDF
Reducing the tension-compression yield asymmetry of extruded Mg-Zn-Ca alloy via equal channel angular pressing 被引量:8
3
作者 L.B.Tong M.Y.Zheng +4 位作者 S.Kamado D.P.Zhang J.Meng L.R.Cheng H.J.Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第4期302-308,共7页
The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large ... The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large strain during the equal channel angular pressing,accompanied with very fine Ca_(2)Mg_(6)Zn_(3) phases with average diameter of 70 nm.The weak tension-compression yield asymmetry after equal channel angular pressing is mainly attributed to the reduced volume fraction of extension twinning during the compression,because the slope(k)of twinning in Hall-Petch relationship is higher than that of dislocation slip,and the twinning deformation is difficult to take place with decreasing grain size.The basal slip is more active in the alloy after equal channel angular pressing,due to the non-basal texture components,which hinders the twinning activation and reduces the yield asymmetry.Furthermore,the presence of fine precipitate restricts the twinning activation,which also contributes to the reduction of yield asymmetry. 展开更多
关键词 Mg-Zn-Ca alloy yield asymmetry Equal channel angular pressing TWINNING PRECIPITATES
下载PDF
Reducing the yield asymmetry in Mg-5Li-3Al-2Zn alloy by hot-extrusion and multi-pass rolling 被引量:5
4
作者 Xiaoqiang Li Liang Ren +6 位作者 Qichi Le Lei Bao Peipeng Jin Ping Wang Chunlong Cheng Xiong Zhou Chenglu Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期937-949,共13页
Reducing the yield asymmetry is very important concern for wrought Mg-Li alloys.In this study,Mg-5Li-3Al-2 Zn(LAZ532)alloy was successfully produced by hot-extrusion followed by multi-pass rolling at 573 K.Microstruct... Reducing the yield asymmetry is very important concern for wrought Mg-Li alloys.In this study,Mg-5Li-3Al-2 Zn(LAZ532)alloy was successfully produced by hot-extrusion followed by multi-pass rolling at 573 K.Microstructure evolution,mechanical properties and yield asymmetry reducing of LAZ532 alloys at different rolling passes were studied.By observing microstructure using transmission electron microscopy showed that a small amount of ultra-fine Al Mg_(4)Zn_(11)and nano Li_(3)Al_(2) phases existed in the alloy.With the increasing of rolling passes,the grains of the alloys were obviously refined,and comprehensive mechanical properties were dramatically improved.Meanwhile,it also showed an excellent tension and compression yield symmetry(TYS/CYS was about 1).The results showed that the combined action of the weak{0001}basal lamellar texture,grain refinement and addition of Li element could effectively improve the yield symmetry.Furthermore,based on theoretical analysis,the yield strength in the alloys mainly depended on the strengthening contributions of LAGBs and HAGBs,and strengthening effect of HAGBs most(~50%)to the yield strength improvement. 展开更多
关键词 Mg-Li alloy Tension and compression yield asymmetry Dynamically recrystallized Texture evolution
下载PDF
A crystal plasticity based approach to establish role of grain size and crystallographic texture in the Tension–Compression yield asymmetry and strain hardening behavior of a Magnesium–Silver–Rare Earth alloy 被引量:3
5
作者 Sourav Mishra F.Khan S.K.Panigrahi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第9期2546-2562,共17页
Existence of tension–compression yield asymmetry is a serious limitation to the load bearing capablities of Magnesium alloys in a number of light weight structural applications.The present work is aimed at nullifying... Existence of tension–compression yield asymmetry is a serious limitation to the load bearing capablities of Magnesium alloys in a number of light weight structural applications.The present work is aimed at nullifying the tension to compression asymmetry problem and strain hardening anomalies in a Magnesium–Silver–Rare Earth alloy by engineering different levels of microstructural conditions via friction stir processing and post process annealing.The existence and extent of yield asymmetry ratio in the range of microstructural conditions was experimentally obtained through quasistatic tensile and compression tests.The yield asymmetry problem was profoundly present in specimens of coarse grained microstructures when compared to their fine grained and ultra fine grained counterparts.The impact of the microstructure and associated mechanisms of plasticity on the macroscopic strain hardening behavior was established by Kock–Mecking’s analysis.Crystal plasticity simulations using Viscoplastic Self Consistency approach revealed the consequential role of extension twinning mechanism for the existence of yield asymmetry and anomalies in strain hardening behavior.This was especially dominant with coarsening of grain size.Electron Microscopy and characterization were conducted thoroughly in partially deformed specimens to confirm the predictions of the above simulations.The role of crystallographic texture for inducing the polarity to Tension–Compression yield asymmetry was corroborated.A critical grain size in Magnesium–Silver–Rare earth alloy was hereby established which could nullify influences of extension twinning in yield asymmetry ratio. 展开更多
关键词 Magnesium silver rare earth alloy Friction stir processing Ultrafine-grained microstructure Tension to compression yield strength asymmetry Crystallographic texture Strain hardening Kock mecking plots Visco plastic self consistency
下载PDF
Exceptional reversed yield strength asymmetry in a rare-earth free Mg alloy containing quasicrystal precipitates
6
作者 Qiang Yang Shuhui Lv +2 位作者 Zixiang Yan Zefeng Xie Xin Qiu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期687-699,共13页
This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting tr... This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry. 展开更多
关键词 Magnesium alloy Reversed yield strength asymmetry Transmission electron microscopy(TEM) TWINNING Dislocations
下载PDF
Influence of Grain Size and Texture on the Yield Asymmetry of Mg-3Al-1Zn Alloy 被引量:15
7
作者 S.M.Yin C.H.Wang +2 位作者 Y.D.Diao S.D.Wu S.X.Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第1期29-34,共6页
The yield asymmetry between compression and tension of magnesium alloy Mg-3Al-1Zn(AZ31) with different grain sizes and textures has been studied by tensile and compressive testing of as-cast,as-extruded and equal ch... The yield asymmetry between compression and tension of magnesium alloy Mg-3Al-1Zn(AZ31) with different grain sizes and textures has been studied by tensile and compressive testing of as-cast,as-extruded and equal channel angular pressed(ECAPed) specimens.The significant yield asymmetry(the ratio of yield strength between compression and tension σyc/σyt is ~0.44) was found in as-extruded specimens and the corresponding microstructure evolution during deformation revealed that {10 ˉ 12} tensile twinning is the underlying reason for the large yield asymmetry.Strong texture and grain size are influential factors for large yield asymmetry.The separate contributions of grain size and texture on yield asymmetry were investigated. 展开更多
关键词 Magnesium alloys yield asymmetry Texture Grain size Equal channel angular pressing(ECAP)
原文传递
Variation in dynamic deformation behavior and resultant yield asymmetry of AZ80 alloy with extrusion temperature 被引量:2
8
作者 Sang-Hoon Kim Sang Won Lee +2 位作者 Byoung Gi Moon Ha Sik Kim Sung Hyuk Park 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第11期225-236,共12页
In this work,variation in the dynamic recrystallization(DRX)and dynamic precipitation behavior of AZ80 alloy during extrusion due to changes in extrusion temperature was investigated,and the resultant microstructure a... In this work,variation in the dynamic recrystallization(DRX)and dynamic precipitation behavior of AZ80 alloy during extrusion due to changes in extrusion temperature was investigated,and the resultant microstructure and yield asymmetry were analyzed.As the extrusion temperature increases from 250℃to 350℃,the primary DRX mechanism changes from twin-induced DRX to discontinuous DRX,resulting in an increase in the DRX area fraction and un DRXed grain size.In addition,as the extrusion temperature rises,Mg17Al12 precipitation during extrusion decreases sharply throughout the extruded material.The reduction in the compressive yield strength(CYS)with increasing extrusion temperature is more pronounced than it is for the tensile yield strength(TYS),which ultimately increases the yield asymmetry of the extruded material.The higher extrusion temperature has less of an influence on the TYS due to the promotion of certain hardening effects.On the other hand,the greater reduction in the CYS is attributed to the increased fraction and size of regions in which{1012}twins predominantly form and the lower amount of precipitates,which effectively facilitates{1012}twinning. 展开更多
关键词 Magnesium alloys EXTRUSION RECRYSTALLIZATION PRECIPITATION yield asymmetry
原文传递
Variations in dynamic recrystallization behavior and mechanical properties of AZ31 alloy with extrusion temperature 被引量:1
9
作者 Jae Won Cha Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2351-2365,共15页
This study investigates the effects of extrusion temperature on the dynamic recrystallization(DRX)behavior of a Mg-3Al-1Zn-0.3Mn(AZ31,wt%)alloy during hot extrusion and on the microstructural characteristics and mecha... This study investigates the effects of extrusion temperature on the dynamic recrystallization(DRX)behavior of a Mg-3Al-1Zn-0.3Mn(AZ31,wt%)alloy during hot extrusion and on the microstructural characteristics and mechanical properties of materials extruded at 350 and 450℃.An increase in the extrusion temperature causes a decrease in the amount of strain energy accumulated in the material during extrusion,because of promoted activation of pyramidal<c+a>slip and dynamic recovery.This reduced strain energy weakens the DRX behavior during extrusion,which eventually results in a decrease in the area fraction of recrystallized grains of the extruded material.The material extruded at 450℃has coarser grains and a stronger basal fiber texture than that extruded at 350℃.As the extrusion temperature increases from 350 to 450℃,the tensile yield strength(TYS)of the extruded material increases from 191.8 to 201.5 MPa,whereas its compressive yield strength(CYS)decreases from 122.5 to 111.0 MPa;consequently,its tension-compression yield stress ratio(CYS/TYS)decreases from 0.64 to 0.55.The increase in the TYS is attributed mainly to the stronger texture hardening and strain hardening effects of the extruded material,and the decrease in the CYS is attributed to the reduced twinning stress resulting from grain coarsening and texture intensification.The microstructural and textural evolutions of the materials during extrusion and the deformation and hardening mechanisms of the extruded materials are discussed in detail. 展开更多
关键词 Mg-Al-Zn alloy EXTRUSION Dynamic recrystallization Microstructure yield asymmetry
下载PDF
Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets 被引量:11
10
作者 Yanfu Chai Yan Song +7 位作者 Bin Jiang Jie Fu Zhongtao Jiang Qingshan Yang Haoran Sheng Guangsheng Huang Dingfei Zhang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE 2019年第4期547-554,共8页
The microstructures and mechanical properties of the composite extruded AZ31/AZ31 and AZ31/4047 Al sheets were investigated and made a comparison to the conventional extruded AZ31 sheet.Owing to the introduced intense... The microstructures and mechanical properties of the composite extruded AZ31/AZ31 and AZ31/4047 Al sheets were investigated and made a comparison to the conventional extruded AZ31 sheet.Owing to the introduced intense shear deformation at the interface during the composite extrusion,grain refinement and tilted texture were detected in AZ31 layers of the AZ31/AZ31 and AZ31/4047 Al sheets,while the conventional extruded AZ31 sheet exhibited a relative coarse,inhomogeneous microstructure and strong basal texture.The compressiontension yield ratio was increased gradually from the AZ31 to the AZ31/AZ31 and AZ31/4047 Al sheets.Besides,the AZ31/4047 Al sheet could successfully accomplish the whole bending forming process at room temperature,while the AZ31 and AZ31/AZ31 sheets were both bend-formed to failure with significant cracks in the outer tensile region under the identical bending parameters.Moreover,under the same bending strain,both the outward offset degree of strain neutral layer and the sheet thickening were more serious in the AZ31/4047 Al composite sheet than those of the AZ31 and AZ31/AZ31 sheets.The foremost reason was the quite wide gap of material properties between Mg alloy AZ31 layer(tensile loading in the outer region)and Al 4047 layer(compressive loading in the inner region). 展开更多
关键词 Mg alloy sheet Composite extrusion Tension-compression yield asymmetry BENDABILITY
下载PDF
The slip activity during the transition from elastic to plastic tensile deformation of the Mg-Al-Mn sheet 被引量:5
11
作者 P.Dobroň D.Drozdenko +3 位作者 K.Fekete M.Knapek J.Bohlen F.Chmelík 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期1057-1067,共11页
The deformation behavior of the Mg-Al-Mn sheet was investigated during tensile loading along the rolling(RD)and transversal direction(TD)with special attention to the early stage of deformation.The activity of disloca... The deformation behavior of the Mg-Al-Mn sheet was investigated during tensile loading along the rolling(RD)and transversal direction(TD)with special attention to the early stage of deformation.The activity of dislocation slip systems during the transition from elastic to plastic deformation was revealed by the acoustic emission(AE)technique.The parametrization and statistical AE analysis using the adaptive sequential k-mean(ASK)clustering provided necessary information about the individual deformation mechanisms and their evolution.The AE findings were supported by microstructural analyses,including in-situ secondary electron(SE)imaging and Schmid factor estimation for the activity of particular dislocation slip systems with respect to the loading direction.It was found that basal slip is the dominating mechanism up to the stress of~80 MPa in both loading directions with an absolute dominance during the RD-loading,while during the TD-loading,the contribution of prismatic slip to the deformation at stresses above 50 MPa was determined.Below the yielding in both loading directions,the predominance of prismatic over pyramidal slip was found at the stress in the range of 80-110 MPa and the opposite tendency occurred at stresses between 110 and 140 MPa. 展开更多
关键词 Magnesium sheet yield asymmetry Acoustic emission Clustering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部