Water resource access in the Nouhao sub-basin, assessed based on the availability of drinking water mobilization facilities, the availability of water for uses and the quality of drinking water, revealed that in 2017 ...Water resource access in the Nouhao sub-basin, assessed based on the availability of drinking water mobilization facilities, the availability of water for uses and the quality of drinking water, revealed that in 2017 the basin was covered by 1249 modern water point, main drinking water sources. On average, the sub-basin shows a ratio of 271 users per drinking water point. Communal level shows some disparity with Bittou recording the highest number of people per drinking water point, i.e., around 537. Water that can be captured in the entire sub-basin meets only 42% of the total water needs from the three mains uses: irrigation, domestic consumption and livestock. The highest demander among these uses is Irrigation with 75% of the need, i.e., approximately 12,859,995 m<sup>3</sup>. Water in 33% drinking sources of this sub basin is of poor quality. Arsenic, one of the quality parameters studied, is found in some communes of the sub-basin. 11% of the water points in Bissiga are arsenic polluted making this commune the most arsenic contaminated location. The vulnerability maps deducted from lack of water for uses;lack of drinking water works and poor water quality shows so, the exposure level of the sub-basin’ communes to some potential risks related to low water resources access.展开更多
River flow in the Songwe sub-basin is predicted to alter due to climate change, which would have an impact on aquatic habitats, infrastructure, and people’s way of life. Therefore, the influence of climate change sho...River flow in the Songwe sub-basin is predicted to alter due to climate change, which would have an impact on aquatic habitats, infrastructure, and people’s way of life. Therefore, the influence of climate change should be taken into account when making decisions about the sustainable management of water resources in the sub-basin. This study looked into how river discharge would react to climate change in the future. By contrasting hydrological characteristics simulated under historical climate (1981-2010) with projected climate (2011-2040, 2041-2070, and 2071-2100) under two emission scenarios, the effects of climate change on river flow were evaluated (RCP 4.5 and RCP 8.5). The ensemble average of four CORDEX regional climate models was built to address the issue of uncertainty introduced by the climate models. The SWAT model was force-calibrated using the results from the generated ensemble average for the RCP 4.5 and RCP 8.5 emission scenarios in order to mimic the river flow during past (1981-2010) and future (2011-2100) events. The increase in river flows for the Songwe sub-basin is predicted to be largest during the rainy season by both the RCP 4.5 and RCP 8.5 scenarios. Under RCP 8.5, the abrupt decrease in river flow is anticipated to reach its maximum in March 2037, when the discharge will be 44.84 m<sup>3</sup>/sec, and in March 2027, when the discharge will be 48 m<sup>3</sup>/sec. The extreme surge in river flow will peak, according to the RCA4, in February 2023, in April 2083 under RCP 4.5, and, according to the CCLM4 and RCA4, in November 2027 and November 2046, respectively. The expected decrease and increase in river flow throughout both the dry and wet seasons may have an impact on the management of the sub-water basin’s resources, biodiversity, and hydraulic structures. The right adaptations and mitigation strategies should be adopted in order to lessen the negative consequences of climate change on precipitation, temperature, and river flow in the sub-basin.展开更多
This paper analyzes the land use status and land use structure change in 1995-2004 in Yining City, revealing that the agricultural land area has decreased rapidly, and construction land has increased dramatically. Mor...This paper analyzes the land use status and land use structure change in 1995-2004 in Yining City, revealing that the agricultural land area has decreased rapidly, and construction land has increased dramatically. Moreover, this paper inves- tigates the relation of economy, urbanization, location, land system policy with land use structure, and puts forward rationalization proposal for optimization of land use structure, to provide reference for land use measurements in the future.展开更多
Based on the interpretations of three seismic profiles and one wide-angle seismic profile across the Northwest Sub-basin,South China Sea.stratigraphic sequences,deformation characteristics and an extension model for t...Based on the interpretations of three seismic profiles and one wide-angle seismic profile across the Northwest Sub-basin,South China Sea.stratigraphic sequences,deformation characteristics and an extension model for this sub-basin have been worked out.Three tectonic-stratigraphic units are determined.Detailed analyses of extension show that the event occurred mainly during the Paleogene and resulted in the formation of half-grabens or grabens distributed symmetrically around the spreading center.Sediments are characterized by chaotic and discontinuous reflectors,indicating clastic sediments. Farther to the southwest,the sub-basin features mainly continental rifting instead of sea-floor spreading. The rifting would have been controlled by the shape of the massif and developed just along the northern edge of the Zhongsha-Xisha Block,rather than joined the Xisha Trough.After 25 Ma.a southward ridge jump triggered the opening of the Southwest Sub-basin.The NW-directed stress caused by the sea-floor spreading of the Northwest Sub-basin may have prevented the continuous opening of the sub-basin.After that the Northwest Sub-basin experienced thermal cooling and exhibited broad subsidence.The deep crustal structure shown by the velocity model from a wide-angle seismic profile is also symmetrical around the spreading center,which indicates that the Northwest Sub-basin might have opened in a pure shear model.展开更多
Hydro-chemical characteristics of groundwater and their changes as affected by human activities were studied in the Ejin Sub-Basin of the Inner Mongolia Autonomous Region, China, to understand the groundwater evolutio...Hydro-chemical characteristics of groundwater and their changes as affected by human activities were studied in the Ejin Sub-Basin of the Inner Mongolia Autonomous Region, China, to understand the groundwater evolution, to identify the predominant geochemical processes taking place along the horizontal groundwater flow path, and to characterize anthropogenic factors affecting the groundwater environment based on previous data. The concentrations of major ions and total dissolved solids (TDS) in the groundwater showed a great variation, with 62.5% of the samples being brackish (TDS ≥ 1 000 mg L^-l). The groundwater system showed a gradual hydro-chemical zonation composed of Na^+ -HCO3^-, Na^+ -Mg^2+ -SO4 ^2 -Cl^-, and Na^+ -Cl^-. The relationships among the dissolved species allowed identification of the origin of solutes and the processes that generated the observed water compositions. The dissolution of halite, dolomite, and 2- gypsum explained, in part, the presence of Na^+, K^+, Cl^-, SO^4 , and Ca^2+, but other processes, such as mixing, Na^+ exchange for Ca^2+ and Mg^2+, and calcite precipitation also contributed to the composition of water. Human activity, in particular large-scale water resources development associated with dramatic population growth in the last 50 years, has led to tremendous changes in the groundwater regime, which reflected in surface water runoff change, decline of groundwater table and degeneration of surface water and groundwater quality. Solving these largely anthropogenic problems requires concerted, massive and long-term efforts.展开更多
Late Paleozoic volcanic rocks are well exposed in the Yining Block,NW China,and are predominately composed of andesites,rhyolites and volcaniclastics as well as minor basalts.Study of the petrology,whole-rock geochemi...Late Paleozoic volcanic rocks are well exposed in the Yining Block,NW China,and are predominately composed of andesites,rhyolites and volcaniclastics as well as minor basalts.Study of the petrology,whole-rock geochemistry and zircon U-Pb dating for the Early Carboniferous alkaline basalts from Wusun Mountain,western Yining Block,constrains their petrogenesis and tectonic evolution.The alkaline basalts consist mainly of plagioclases,mostly albite and labradorite,as well as clinopyroxenes and olivines;zircon U-Pb dating indicates their formation at ca.350 Ma.Geochemically,the basaltic samples have low SiO_(2)contents,and high TiO_(2),Al_(2)O_(3)and alkaline contents,coupled with high Na_(2)O/K_(2)O ratios,displaying an alkaline basalt affinity.They show remarkable LILE enrichment and HFSE depletion.Meantime,these samples have relatively high TFe_(2)O_(3),MgO,and Mg#values as well as Ni and Cr,relatively high Sm/Yb and U/Th,suggesting origination from a mantle source metasomatized by slab fluids.They formed in a transitional tectonic setting from arc to intraplate,showing a typical affinity of back-arc basin basalts.The alkaline basalts were likely generated in a nascent back-arc extension setting resulting from slab rollback of the southern Tianshan oceanic lithosphere.A bidirectional subduction model seems more reasonable for the evolution of the southern Tianshan Ocean.These new data will provide a new tectonic model for Late Paleozoic tectonic evolution of the western Yining Block.展开更多
Drought is a natural phenomenon posing severe implications for soil,groundwater and agricultural yield.It has been recognized as one of the most pervasive global change drivers to affect the soil.Soil being a weakly r...Drought is a natural phenomenon posing severe implications for soil,groundwater and agricultural yield.It has been recognized as one of the most pervasive global change drivers to affect the soil.Soil being a weakly renewable resource takes a long time to form,but it takes no time to degrade.However,the response of soil to drought conditions as soil loss is not manifested in the existing literature.Thus,this study makes a concerted effort to analyze the relationship between drought conditions and soil erosion in the middle sub-basin of the Godavari River in India.MODIS remote sensing data was utilized for driving drought indices during 2000-2019.Firstly,we constricted Temperature condition index(TCI)and Vegetation Condition Index(VCI)from Land Surface Temperature(LST)and Enhanced Vegetation Index(EVI)derived from MODIS data.TCI and VCI were then integrated to determine the Vegetation Health Index(VHI).Revised Universal Soil Loss Equation(RUSLE)was utilized for estimating soil loss.The relationship between drought condition and vegetation was ascertained using the Pearson correlation.Most of the northern and southern watersheds experienced severe drought condition in the sub-basin during2000-2019.The mean frequency of the drought occurrence was 7.95 months.The average soil erosion in the sub-basin was estimated to be 9.88 t ha^(-1)year^(-1).A positive relationship was observed between drought indices and soil erosion values(r value being 0.35).However,wide variations were observed in the distribution of spatial correlation.Among various factors,the slope length and steepness were found to be the main drivers of soil erosion in the sub-basin.Thus,the study calls for policy measures to lessen the impact of drought and soil erosion.展开更多
Ethiopia is also frequently identified as a country that is highly vulnerable to climate variability and change. The potential adverse effects of climate change on Ethiopia’s agricultural sector are a major concern, ...Ethiopia is also frequently identified as a country that is highly vulnerable to climate variability and change. The potential adverse effects of climate change on Ethiopia’s agricultural sector are a major concern, particularly given the country’s dependence on agricultural production, which is sensitive to climate change and variability. This problem calls the need to understand agroecology based vulnerability to climate change and variability to better adapt to climate risks and promote strategies for local communities so as to enhance food security. The objective of this study is to estimate and compare the level of vulnerability of smallholder farmers’ to climate change and variability from three agroecology representing Muger River sub-Basin of the upper Blue Nile basin using Livelihood Vulnerability Index. The research used quantitative and qualitative data collected through Focussed Group Discussions, key informant interviews and a questionnaire survey of 442 sampled households across three different agro-ecologies in the sub-basin. The results reveal that along with the different agro-ecological zone, households and communities experienced different degrees of climate vulnerability. These differences are largely explained by differences in exposure, sensitivity and adaptive capacity of smallholder farmers. The livelihood vulnerability analysis reveals that Kolla agroecology exhibits relatively low adaptive capacity, higher sensitivity and higher exposure to climate change and variability that is deemed to be the most vulnerable agroecology. These contributing factors to a vulnerability in Kolla agroecology are largely influenced by assets, livelihood diversification, innovation, infrastructure, socio-demographic factors, social capital, agriculture, food security, and natural disasters and climate variability. The result furthermore shows that Dega agroecology has least vulnerable owing to its higher adaptive capacity. These results suggest that designing agroecology based resilience-building adaptation strategies is crucial to reduce the vulnerability of smallholder farmers to climate change and variability.展开更多
A new gravity survey was carried out in the northern part of the onshore Kribi- Campo sub-basin in Cameroon. The data were incorporated to the existing ones and then analyzed and modeled in order to elucidate the subs...A new gravity survey was carried out in the northern part of the onshore Kribi- Campo sub-basin in Cameroon. The data were incorporated to the existing ones and then analyzed and modeled in order to elucidate the subsurface structure of the area. The area is characterized in its north-western part by considerably high positive anomalies indicative of the presence of a dense intrusive body. We find, 1) from the analysis of the gravity residual anomaly map, the high positive anomalies observed are the signature of a shallow dense structure;2) from the multi-scale analysis of the maxima of the horizontal gradient, the structure is confined between depths of 0.5 km and 5 km;3) from the quantitative interpretation of residual anomalies by spectral analysis, the depth to the upper surface of the intrusive body is not uniform, the average depth of the bottom is h1 = 3.6 km and the depths to particular sections of the roof of the intrusion are h2 = 1.6 km and h3 = 0.5 km;4) and the 3D modeling gives results that are suggestive of the presence of contacts between rocks of different densities at different depths and a dense intrusive igneous body in the upper crust of the Kribi zone. From the 3D model the dense intrusive igneous block is surrounded by sedimentary formations to the south-west and metamorphic formations to the north-east. Both formations have a density of about 2.74 g/cm3. The near surface portions of this igneous block lie at a depth range of 0.5 km to 1.5 km while its lower surface has a depth range of 3.6 km to 5.2 km. The shape of the edges and the bottom of the intrusive body are suggestive of the fact that it forms part of a broader structure underlying the Kribi-Campo sub-basin with a great influence on the sedimentary cover.展开更多
Geochemical data of fifteen Cretaceous sediment samples from Kumba area in the Douala sub-basin are presented to determine the provenance, source rock weathering, tectonic setting and paleo-oxidation conditions of the...Geochemical data of fifteen Cretaceous sediment samples from Kumba area in the Douala sub-basin are presented to determine the provenance, source rock weathering, tectonic setting and paleo-oxidation conditions of the depositional setting of these rocks. For this purpose, the whole-rocks were analyzed for their major and trace element, including rare earth elements (REEs), contents by ICP-AES and ICP-MS methods respectively. On the basis of their major element composition, the rocks have been classified mainly as Fe-shale, shale, arkose and Fe-sandstone. For the provenance, the plot of Zr vs. TiO2, Y/Ni vs. Cr/V, TiO2 vs. Al2O3 diagrams, high LREE/HREE ratios (5.84 to 20.91) and negative and positive Eu anomalies (Eu/Eu*= 0.87 to 1.62) suggest that the studied rocks were mainly derived from felsic igneous rocks with lesser contribution of mafic components. The higher values of paleo-weathering indices such as Plagioclase Index of Alteration (PIA) and Chemical Index of Weathering (CIW), ranging from 79.63 to 99.90 and 87.57 to 99.92 respectively, suggest that the sediments and their potential source rocks experienced intense weathering. Whereas the variable Chemical Index of Alteration (CIA) values (63.01 to 99.50) coupled with high content of K2O (up to 7.5) in most samples could be indicative of K-addition diagenetic processes. The A-CN-K plot also suggests a possible K-addition. The redox conditions during the sedimentation were suboxic to oxic as evidenced by the Ce anomalies of 0.88 to 1.03. This is also confirmed by the values of Ni/Co (less than 7), U/Th (less than 1.25) and Cu/Zn (mostly less than 1). Tectonic discrimination diagrams (e.g., SiO2-K2O/Na2O and Th-Sc-Zr/10) show that these rocks were deposited mainly in an active continental margin setting, and in various tectonic environments. This reflects probably the recycling effect experienced by the samples studied.展开更多
The aim of this research work was to report a facies analysis of the N’Kappa formation, identified the clay minerals present in those facies and evaluate their oil potential. For that to be done, Lithostratigraphic d...The aim of this research work was to report a facies analysis of the N’Kappa formation, identified the clay minerals present in those facies and evaluate their oil potential. For that to be done, Lithostratigraphic descriptions were performed on three natural outcrops chosen in three different localities of the northern border of Douala sedimentary basin. Ten shaly samples were then collected on those outcrops and submit to X ray diffraction and Rock-Eval pyrolysis. Lithologically, the N’Kappa formation is made up of dark to grey shales and fine to coarse sandtones. The mineralogic content of the shales is made up of Kaolinite, dickite, low quartz and vaterite. Those shaly facies present high amount of immature organic matter (average TOC content around 2%). The petroleum potential is fair to poor (average S2 for all the samples around 3.33 mg HC/g of rock) though some samples (M1 and M2) presenting a good petroleum potential up to 6.62 kg HC/t of rock and 6.44 kg HC/t of rock respectively. They have undergone a low degree of diagenesis (early to burying diagenesis). This is evidenced by the predominance of kaolinite and dickite, low quartz and vaterite which are minerals stable at low temperature.展开更多
Nb-enriched arc basalts,an extremely special rock type,were formed in a specific tectonic setting,which have attracted much attention in recent years.Although Nbenriched basalts in the Yining Block were interpreted as...Nb-enriched arc basalts,an extremely special rock type,were formed in a specific tectonic setting,which have attracted much attention in recent years.Although Nbenriched basalts in the Yining Block were interpreted as arc-affinity basalts,some geologists suggested that they should be Nb-enriched continental basalts and not arcrelated.Recently,the Nb-enriched arc basalts have been first identified from the Dahalajunshan Formation in southern Wusunshan,Yining.展开更多
There are some factors, such as the topographic relief, sedimentary thickness and thermal conductivity, magmatic activity and thermal cooling, influencing the seafloor heat flow and the evolution of lithosphere struct...There are some factors, such as the topographic relief, sedimentary thickness and thermal conductivity, magmatic activity and thermal cooling, influencing the seafloor heat flow and the evolution of lithosphere structure in southwest sub-basin (SWSB), South China Sea. On the base of the geological structure characteristic of SWSB this paper will discuss some other factors including thermal anomaly area, dike produced by magma intrusion and lithosphere relief, by modeling and calculating. Calculating results indicate partial areas where temperature is higher than vicinity in the lithosphere, which we call thermal anomaly here containing thermal anomaly area and dike in this paper, could decrease heat flow below, increase above, and gradually increase to two sides; heat flow in upwelling parts of lithosphere is usually higher than sinking parts, and in the middle is of a gradual transition.展开更多
文摘Water resource access in the Nouhao sub-basin, assessed based on the availability of drinking water mobilization facilities, the availability of water for uses and the quality of drinking water, revealed that in 2017 the basin was covered by 1249 modern water point, main drinking water sources. On average, the sub-basin shows a ratio of 271 users per drinking water point. Communal level shows some disparity with Bittou recording the highest number of people per drinking water point, i.e., around 537. Water that can be captured in the entire sub-basin meets only 42% of the total water needs from the three mains uses: irrigation, domestic consumption and livestock. The highest demander among these uses is Irrigation with 75% of the need, i.e., approximately 12,859,995 m<sup>3</sup>. Water in 33% drinking sources of this sub basin is of poor quality. Arsenic, one of the quality parameters studied, is found in some communes of the sub-basin. 11% of the water points in Bissiga are arsenic polluted making this commune the most arsenic contaminated location. The vulnerability maps deducted from lack of water for uses;lack of drinking water works and poor water quality shows so, the exposure level of the sub-basin’ communes to some potential risks related to low water resources access.
文摘River flow in the Songwe sub-basin is predicted to alter due to climate change, which would have an impact on aquatic habitats, infrastructure, and people’s way of life. Therefore, the influence of climate change should be taken into account when making decisions about the sustainable management of water resources in the sub-basin. This study looked into how river discharge would react to climate change in the future. By contrasting hydrological characteristics simulated under historical climate (1981-2010) with projected climate (2011-2040, 2041-2070, and 2071-2100) under two emission scenarios, the effects of climate change on river flow were evaluated (RCP 4.5 and RCP 8.5). The ensemble average of four CORDEX regional climate models was built to address the issue of uncertainty introduced by the climate models. The SWAT model was force-calibrated using the results from the generated ensemble average for the RCP 4.5 and RCP 8.5 emission scenarios in order to mimic the river flow during past (1981-2010) and future (2011-2100) events. The increase in river flows for the Songwe sub-basin is predicted to be largest during the rainy season by both the RCP 4.5 and RCP 8.5 scenarios. Under RCP 8.5, the abrupt decrease in river flow is anticipated to reach its maximum in March 2037, when the discharge will be 44.84 m<sup>3</sup>/sec, and in March 2027, when the discharge will be 48 m<sup>3</sup>/sec. The extreme surge in river flow will peak, according to the RCA4, in February 2023, in April 2083 under RCP 4.5, and, according to the CCLM4 and RCA4, in November 2027 and November 2046, respectively. The expected decrease and increase in river flow throughout both the dry and wet seasons may have an impact on the management of the sub-water basin’s resources, biodiversity, and hydraulic structures. The right adaptations and mitigation strategies should be adopted in order to lessen the negative consequences of climate change on precipitation, temperature, and river flow in the sub-basin.
文摘This paper analyzes the land use status and land use structure change in 1995-2004 in Yining City, revealing that the agricultural land area has decreased rapidly, and construction land has increased dramatically. Moreover, this paper inves- tigates the relation of economy, urbanization, location, land system policy with land use structure, and puts forward rationalization proposal for optimization of land use structure, to provide reference for land use measurements in the future.
基金supported by the National Basic Research Program(973) of China (No.2007CB41170403)the National Natural Science Foundation of China(No.40806023)the Scientific Research Fund of the SIO,SOA(No.1404-10)
文摘Based on the interpretations of three seismic profiles and one wide-angle seismic profile across the Northwest Sub-basin,South China Sea.stratigraphic sequences,deformation characteristics and an extension model for this sub-basin have been worked out.Three tectonic-stratigraphic units are determined.Detailed analyses of extension show that the event occurred mainly during the Paleogene and resulted in the formation of half-grabens or grabens distributed symmetrically around the spreading center.Sediments are characterized by chaotic and discontinuous reflectors,indicating clastic sediments. Farther to the southwest,the sub-basin features mainly continental rifting instead of sea-floor spreading. The rifting would have been controlled by the shape of the massif and developed just along the northern edge of the Zhongsha-Xisha Block,rather than joined the Xisha Trough.After 25 Ma.a southward ridge jump triggered the opening of the Southwest Sub-basin.The NW-directed stress caused by the sea-floor spreading of the Northwest Sub-basin may have prevented the continuous opening of the sub-basin.After that the Northwest Sub-basin experienced thermal cooling and exhibited broad subsidence.The deep crustal structure shown by the velocity model from a wide-angle seismic profile is also symmetrical around the spreading center,which indicates that the Northwest Sub-basin might have opened in a pure shear model.
基金Project supported by the National Natural Science Foundation of China (Nos. 40671010 and 40501012).
文摘Hydro-chemical characteristics of groundwater and their changes as affected by human activities were studied in the Ejin Sub-Basin of the Inner Mongolia Autonomous Region, China, to understand the groundwater evolution, to identify the predominant geochemical processes taking place along the horizontal groundwater flow path, and to characterize anthropogenic factors affecting the groundwater environment based on previous data. The concentrations of major ions and total dissolved solids (TDS) in the groundwater showed a great variation, with 62.5% of the samples being brackish (TDS ≥ 1 000 mg L^-l). The groundwater system showed a gradual hydro-chemical zonation composed of Na^+ -HCO3^-, Na^+ -Mg^2+ -SO4 ^2 -Cl^-, and Na^+ -Cl^-. The relationships among the dissolved species allowed identification of the origin of solutes and the processes that generated the observed water compositions. The dissolution of halite, dolomite, and 2- gypsum explained, in part, the presence of Na^+, K^+, Cl^-, SO^4 , and Ca^2+, but other processes, such as mixing, Na^+ exchange for Ca^2+ and Mg^2+, and calcite precipitation also contributed to the composition of water. Human activity, in particular large-scale water resources development associated with dramatic population growth in the last 50 years, has led to tremendous changes in the groundwater regime, which reflected in surface water runoff change, decline of groundwater table and degeneration of surface water and groundwater quality. Solving these largely anthropogenic problems requires concerted, massive and long-term efforts.
基金financially supported by the Fundamental Research Funds for the Central Universities,CHD(Grant Nos.300102271403,300102261401 and 300102261403)the National Natural Science Foundation of China(Grant No.41672285)。
文摘Late Paleozoic volcanic rocks are well exposed in the Yining Block,NW China,and are predominately composed of andesites,rhyolites and volcaniclastics as well as minor basalts.Study of the petrology,whole-rock geochemistry and zircon U-Pb dating for the Early Carboniferous alkaline basalts from Wusun Mountain,western Yining Block,constrains their petrogenesis and tectonic evolution.The alkaline basalts consist mainly of plagioclases,mostly albite and labradorite,as well as clinopyroxenes and olivines;zircon U-Pb dating indicates their formation at ca.350 Ma.Geochemically,the basaltic samples have low SiO_(2)contents,and high TiO_(2),Al_(2)O_(3)and alkaline contents,coupled with high Na_(2)O/K_(2)O ratios,displaying an alkaline basalt affinity.They show remarkable LILE enrichment and HFSE depletion.Meantime,these samples have relatively high TFe_(2)O_(3),MgO,and Mg#values as well as Ni and Cr,relatively high Sm/Yb and U/Th,suggesting origination from a mantle source metasomatized by slab fluids.They formed in a transitional tectonic setting from arc to intraplate,showing a typical affinity of back-arc basin basalts.The alkaline basalts were likely generated in a nascent back-arc extension setting resulting from slab rollback of the southern Tianshan oceanic lithosphere.A bidirectional subduction model seems more reasonable for the evolution of the southern Tianshan Ocean.These new data will provide a new tectonic model for Late Paleozoic tectonic evolution of the western Yining Block.
文摘Drought is a natural phenomenon posing severe implications for soil,groundwater and agricultural yield.It has been recognized as one of the most pervasive global change drivers to affect the soil.Soil being a weakly renewable resource takes a long time to form,but it takes no time to degrade.However,the response of soil to drought conditions as soil loss is not manifested in the existing literature.Thus,this study makes a concerted effort to analyze the relationship between drought conditions and soil erosion in the middle sub-basin of the Godavari River in India.MODIS remote sensing data was utilized for driving drought indices during 2000-2019.Firstly,we constricted Temperature condition index(TCI)and Vegetation Condition Index(VCI)from Land Surface Temperature(LST)and Enhanced Vegetation Index(EVI)derived from MODIS data.TCI and VCI were then integrated to determine the Vegetation Health Index(VHI).Revised Universal Soil Loss Equation(RUSLE)was utilized for estimating soil loss.The relationship between drought condition and vegetation was ascertained using the Pearson correlation.Most of the northern and southern watersheds experienced severe drought condition in the sub-basin during2000-2019.The mean frequency of the drought occurrence was 7.95 months.The average soil erosion in the sub-basin was estimated to be 9.88 t ha^(-1)year^(-1).A positive relationship was observed between drought indices and soil erosion values(r value being 0.35).However,wide variations were observed in the distribution of spatial correlation.Among various factors,the slope length and steepness were found to be the main drivers of soil erosion in the sub-basin.Thus,the study calls for policy measures to lessen the impact of drought and soil erosion.
文摘Ethiopia is also frequently identified as a country that is highly vulnerable to climate variability and change. The potential adverse effects of climate change on Ethiopia’s agricultural sector are a major concern, particularly given the country’s dependence on agricultural production, which is sensitive to climate change and variability. This problem calls the need to understand agroecology based vulnerability to climate change and variability to better adapt to climate risks and promote strategies for local communities so as to enhance food security. The objective of this study is to estimate and compare the level of vulnerability of smallholder farmers’ to climate change and variability from three agroecology representing Muger River sub-Basin of the upper Blue Nile basin using Livelihood Vulnerability Index. The research used quantitative and qualitative data collected through Focussed Group Discussions, key informant interviews and a questionnaire survey of 442 sampled households across three different agro-ecologies in the sub-basin. The results reveal that along with the different agro-ecological zone, households and communities experienced different degrees of climate vulnerability. These differences are largely explained by differences in exposure, sensitivity and adaptive capacity of smallholder farmers. The livelihood vulnerability analysis reveals that Kolla agroecology exhibits relatively low adaptive capacity, higher sensitivity and higher exposure to climate change and variability that is deemed to be the most vulnerable agroecology. These contributing factors to a vulnerability in Kolla agroecology are largely influenced by assets, livelihood diversification, innovation, infrastructure, socio-demographic factors, social capital, agriculture, food security, and natural disasters and climate variability. The result furthermore shows that Dega agroecology has least vulnerable owing to its higher adaptive capacity. These results suggest that designing agroecology based resilience-building adaptation strategies is crucial to reduce the vulnerability of smallholder farmers to climate change and variability.
文摘A new gravity survey was carried out in the northern part of the onshore Kribi- Campo sub-basin in Cameroon. The data were incorporated to the existing ones and then analyzed and modeled in order to elucidate the subsurface structure of the area. The area is characterized in its north-western part by considerably high positive anomalies indicative of the presence of a dense intrusive body. We find, 1) from the analysis of the gravity residual anomaly map, the high positive anomalies observed are the signature of a shallow dense structure;2) from the multi-scale analysis of the maxima of the horizontal gradient, the structure is confined between depths of 0.5 km and 5 km;3) from the quantitative interpretation of residual anomalies by spectral analysis, the depth to the upper surface of the intrusive body is not uniform, the average depth of the bottom is h1 = 3.6 km and the depths to particular sections of the roof of the intrusion are h2 = 1.6 km and h3 = 0.5 km;4) and the 3D modeling gives results that are suggestive of the presence of contacts between rocks of different densities at different depths and a dense intrusive igneous body in the upper crust of the Kribi zone. From the 3D model the dense intrusive igneous block is surrounded by sedimentary formations to the south-west and metamorphic formations to the north-east. Both formations have a density of about 2.74 g/cm3. The near surface portions of this igneous block lie at a depth range of 0.5 km to 1.5 km while its lower surface has a depth range of 3.6 km to 5.2 km. The shape of the edges and the bottom of the intrusive body are suggestive of the fact that it forms part of a broader structure underlying the Kribi-Campo sub-basin with a great influence on the sedimentary cover.
文摘Geochemical data of fifteen Cretaceous sediment samples from Kumba area in the Douala sub-basin are presented to determine the provenance, source rock weathering, tectonic setting and paleo-oxidation conditions of the depositional setting of these rocks. For this purpose, the whole-rocks were analyzed for their major and trace element, including rare earth elements (REEs), contents by ICP-AES and ICP-MS methods respectively. On the basis of their major element composition, the rocks have been classified mainly as Fe-shale, shale, arkose and Fe-sandstone. For the provenance, the plot of Zr vs. TiO2, Y/Ni vs. Cr/V, TiO2 vs. Al2O3 diagrams, high LREE/HREE ratios (5.84 to 20.91) and negative and positive Eu anomalies (Eu/Eu*= 0.87 to 1.62) suggest that the studied rocks were mainly derived from felsic igneous rocks with lesser contribution of mafic components. The higher values of paleo-weathering indices such as Plagioclase Index of Alteration (PIA) and Chemical Index of Weathering (CIW), ranging from 79.63 to 99.90 and 87.57 to 99.92 respectively, suggest that the sediments and their potential source rocks experienced intense weathering. Whereas the variable Chemical Index of Alteration (CIA) values (63.01 to 99.50) coupled with high content of K2O (up to 7.5) in most samples could be indicative of K-addition diagenetic processes. The A-CN-K plot also suggests a possible K-addition. The redox conditions during the sedimentation were suboxic to oxic as evidenced by the Ce anomalies of 0.88 to 1.03. This is also confirmed by the values of Ni/Co (less than 7), U/Th (less than 1.25) and Cu/Zn (mostly less than 1). Tectonic discrimination diagrams (e.g., SiO2-K2O/Na2O and Th-Sc-Zr/10) show that these rocks were deposited mainly in an active continental margin setting, and in various tectonic environments. This reflects probably the recycling effect experienced by the samples studied.
文摘The aim of this research work was to report a facies analysis of the N’Kappa formation, identified the clay minerals present in those facies and evaluate their oil potential. For that to be done, Lithostratigraphic descriptions were performed on three natural outcrops chosen in three different localities of the northern border of Douala sedimentary basin. Ten shaly samples were then collected on those outcrops and submit to X ray diffraction and Rock-Eval pyrolysis. Lithologically, the N’Kappa formation is made up of dark to grey shales and fine to coarse sandtones. The mineralogic content of the shales is made up of Kaolinite, dickite, low quartz and vaterite. Those shaly facies present high amount of immature organic matter (average TOC content around 2%). The petroleum potential is fair to poor (average S2 for all the samples around 3.33 mg HC/g of rock) though some samples (M1 and M2) presenting a good petroleum potential up to 6.62 kg HC/t of rock and 6.44 kg HC/t of rock respectively. They have undergone a low degree of diagenesis (early to burying diagenesis). This is evidenced by the predominance of kaolinite and dickite, low quartz and vaterite which are minerals stable at low temperature.
基金supported by the National Natural Science Foundation of China(Grant No.41273033)
文摘Nb-enriched arc basalts,an extremely special rock type,were formed in a specific tectonic setting,which have attracted much attention in recent years.Although Nbenriched basalts in the Yining Block were interpreted as arc-affinity basalts,some geologists suggested that they should be Nb-enriched continental basalts and not arcrelated.Recently,the Nb-enriched arc basalts have been first identified from the Dahalajunshan Formation in southern Wusunshan,Yining.
文摘There are some factors, such as the topographic relief, sedimentary thickness and thermal conductivity, magmatic activity and thermal cooling, influencing the seafloor heat flow and the evolution of lithosphere structure in southwest sub-basin (SWSB), South China Sea. On the base of the geological structure characteristic of SWSB this paper will discuss some other factors including thermal anomaly area, dike produced by magma intrusion and lithosphere relief, by modeling and calculating. Calculating results indicate partial areas where temperature is higher than vicinity in the lithosphere, which we call thermal anomaly here containing thermal anomaly area and dike in this paper, could decrease heat flow below, increase above, and gradually increase to two sides; heat flow in upwelling parts of lithosphere is usually higher than sinking parts, and in the middle is of a gradual transition.