CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbon...CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbonation capacity,meanwhile the substantial Ca^(2+)releasing of RM is hindered by a covering layer of calcium carbonate.In this study,CO_(2) mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity.Multiple analyzers were employed to characterize the raw materials and resulting mineralization products.The results demonstrated that a synergistic effect existed in the composite system of CFA and RM,resulting in improving CO_(2) mineralization rate and efficiency.The produced calcium carbonate was ectopically attached the surface of CFA in the composite system,thus slowing down its coverage on the surface of RM.This phenomenon facilitated further releasing Ca^(2+)from the internal RM,thereby enhancing CO_(2) mineralization efficiency.Meanwhile,the inclusion of RM significantly improved the alkalinity of the composite system,which not only promoted the dissolution of Ca^(2+)of the inert CaSO_(4)(H_(2)O)_(2) in CFA,but also accelerated CO_(2) mineralization rate.The investigation would be beneficial to CO_(2) mineralization using industrial solid wastes.展开更多
An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly desi...An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.展开更多
Fusain from Tongting (Huaibei, Anhui Province) bituminous (FTTB) coal was fractionally extracted using Soxhlet extractor with CS2. Then the extracts were analyzed with GC/MS. Comparison of experimental data between FT...Fusain from Tongting (Huaibei, Anhui Province) bituminous (FTTB) coal was fractionally extracted using Soxhlet extractor with CS2. Then the extracts were analyzed with GC/MS. Comparison of experimental data between FTTB coal and clarain from Tongting bituminous (CTTB) coal was carried out. The results show that the kinds of small molecule components detected by GC/MS of FTTB are less than those of CTTB. Long-chain alkanes exist mostly in the extracts of fusain. Macromolecular networks are predominant in the FTTB coal mainly composed of inertinite in the coal petrography. The size of micropores in the FTTB coal is relatively small, and the development of micropores is relatively low. Thus the content of aromatic compounds with affinity for micropores is relative low in FTTB, while the content of long-chain alkanes with affinity for macromolecule networks is relatively high. Sub-components in exinite determine the distribution of long-chain alkanes extracted in the last stage. Odd-numbered carbon distribution appears when resin is most in exinite, while high carbon alkane distribution appears when exinite is dominant in cutinite. Small aromatic molecules are firstly packed in micropores, and exist in a free state after micropores are saturated.展开更多
基金National Natural Science Foundation of China(21706172)Shanxi Province Natural Science Foundation(202203021221069 and 20210302123167).
文摘CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbonation capacity,meanwhile the substantial Ca^(2+)releasing of RM is hindered by a covering layer of calcium carbonate.In this study,CO_(2) mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity.Multiple analyzers were employed to characterize the raw materials and resulting mineralization products.The results demonstrated that a synergistic effect existed in the composite system of CFA and RM,resulting in improving CO_(2) mineralization rate and efficiency.The produced calcium carbonate was ectopically attached the surface of CFA in the composite system,thus slowing down its coverage on the surface of RM.This phenomenon facilitated further releasing Ca^(2+)from the internal RM,thereby enhancing CO_(2) mineralization efficiency.Meanwhile,the inclusion of RM significantly improved the alkalinity of the composite system,which not only promoted the dissolution of Ca^(2+)of the inert CaSO_(4)(H_(2)O)_(2) in CFA,but also accelerated CO_(2) mineralization rate.The investigation would be beneficial to CO_(2) mineralization using industrial solid wastes.
基金financially supported by the Renewable Energy and Hydrogen Projects in National Key Research & Development Program of China (2019YFB1505000)。
文摘An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.
基金Project 50474066 supported by National Natural Science Foundation of China Project B200405 supported by China University of Mining & Technology
文摘Fusain from Tongting (Huaibei, Anhui Province) bituminous (FTTB) coal was fractionally extracted using Soxhlet extractor with CS2. Then the extracts were analyzed with GC/MS. Comparison of experimental data between FTTB coal and clarain from Tongting bituminous (CTTB) coal was carried out. The results show that the kinds of small molecule components detected by GC/MS of FTTB are less than those of CTTB. Long-chain alkanes exist mostly in the extracts of fusain. Macromolecular networks are predominant in the FTTB coal mainly composed of inertinite in the coal petrography. The size of micropores in the FTTB coal is relatively small, and the development of micropores is relatively low. Thus the content of aromatic compounds with affinity for micropores is relative low in FTTB, while the content of long-chain alkanes with affinity for macromolecule networks is relatively high. Sub-components in exinite determine the distribution of long-chain alkanes extracted in the last stage. Odd-numbered carbon distribution appears when resin is most in exinite, while high carbon alkane distribution appears when exinite is dominant in cutinite. Small aromatic molecules are firstly packed in micropores, and exist in a free state after micropores are saturated.