Among the many strategies to fabricate the silicon/carbon composite,yolk/double-shells structure can be regarded as an effective strategy to overcome the intrinsic defects of Si-based anode materials for Li-ion batter...Among the many strategies to fabricate the silicon/carbon composite,yolk/double-shells structure can be regarded as an effective strategy to overcome the intrinsic defects of Si-based anode materials for Li-ion batteries(LIBs).Hereon,a facile and inexpensive technology to prepare silicon/carbon composite with yolk/double-shells structure is proposed,in which the double buffering carbon shells are fabricated.The silicon/carbon nanoparticles with core-shell structure are encapsulated by SiO_(2)and external carbon layer,and it shows the yolk/double-shells structure via etching the SiO_(2)sacrificial layer.The multiply shells structure not only significantly improves the electrical conductivity of composite,but also effectively prevents the exposure of Si particles from the electrolyte composition.Meanwhile,the yolk/double-shells structure can provide enough space to accommodate the volume change of the electrode during charge/discharge process and avoid the pulverization of Si particles.Moreover,the as-prepared YDS-Si/C shows excellent performance as anode of LIBs,the reversible capacity is as high as 1066 mA h g^(-1) at the current density of 0.5 A g^(-1) after 200 cycles.At the same time,the YDS-Si/C has high capacity retention and good cyclic stability.Therefore,the unique architecture design of yolk/double-shells for Si/C composite provides an instructive exploration for the development of next generation anode materials of LIBs with high electrochemical performances and structural stability.展开更多
The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricat...The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials.展开更多
In this study,the impacts of egg consumption on mice model of metabolic syndrome(Met S)were comparatively investigated.Mice were divided into five groups(n=8):normal diet group(ND),high-fat diet group(HFD),HFD with wh...In this study,the impacts of egg consumption on mice model of metabolic syndrome(Met S)were comparatively investigated.Mice were divided into five groups(n=8):normal diet group(ND),high-fat diet group(HFD),HFD with whole egg group(WE),HFD with free-yolk egg substitute group(YFES),and HFD with lovastatin group(Lov).Main biochemical indexes and a non-targeted lipidomic analysis were employed to insight the lipid profile changes in serum.It was revealed that WE could significantly improve serum biochemical indexes by reducing body weight,low-density lipoprotein cholesterol(LDL-C)and total cholesterol(TC),while increasing high-density lipoprotein cholesterol.YFES exhibited remarkably better performance in increasing phosphatidylglycerol and phosphatidic acids,while decreasing phosphatidylinositol than WE.A total of 50 differential lipids biomarkers tightly related to glycerophospholipids metabolism were screened out.Carnitine C18:2 and C12:1,SM(d18:0/12:0),and SM(d18:1/14:1)were significantly upregulated in YFES compared to WE.YFES reduced expression of SREBP-1c and Cpt1a,while did not affect the expression of PPAR-α.Sphingomyelin biomarkers were positively related to the TC(|r|>0.6),while PPAR-αwas negatively correlated with triglyceride and LDL-C levels.To sum up,YFES attenuated HFD-induced Met S by improving the serum phospholipids,which account for its modulation of glycerophospholipid metabolism.展开更多
The egg yolks of birds contain most of the maternally derived materials required for embryo development and are an important factor influencing embryo development and offspring viability.Individual variation in egg-la...The egg yolks of birds contain most of the maternally derived materials required for embryo development and are an important factor influencing embryo development and offspring viability.Individual variation in egg-laying date frequently occurs in passerines inhabiting highly seasonal environments.Females laying in early and late stages of the breeding season encounter different environment temperatures and food conditions,which can affect the levels of metabolities in their bodies,thereby altering the transmission of these materials to the eggs.We test a hypothesis that yolk small molecule compounds of Asian Short-toed Lark(Alaudala cheleensis)could vary between early(mid-May)and late(mid-June)broods.Using the UHPLC-MS/MS method,683 compounds belonging to 21 compound groups are detected in the yolks.The contents of 18 compounds are significantly different between early and late broods.Ten differential compounds are significantly higher in the early laid eggs,among whichγ-aminobutyric acid,creatine,prostaglandins,palmitoleic acid,linoleic acid,and trans linoleic acid are related to low environment temperature response.The eggs laid in late stage exhibit significantly higher levels of 5-L-glutamyl-L-alanine andγ-glutamate-leucine,1,3-dimethyluric acid and mannose,which may be attributed to females in the late group consuming more insects.We suggest conducting a comprehensive investigation to reveal the yolk small molecule compounds mediated maternal effects on offspring phenotypes under varying ecological conditions.展开更多
BACKGROUND Extragonadal yolk sac tumors(YSTs)are rare,with only a low reported tumor occurrence outside the gonads locally and abroad.Extragonadal YSTs are usually a diagnostic challenge,because they are infrequent,bu...BACKGROUND Extragonadal yolk sac tumors(YSTs)are rare,with only a low reported tumor occurrence outside the gonads locally and abroad.Extragonadal YSTs are usually a diagnostic challenge,because they are infrequent,but also because a thoughtful and detailed differential diagnostic process must be performed.CASE SUMMARY Here we present a case of an abdominal wall YST in a 20-year-old woman admitted with a tumor in the lower abdomen close to the umbilicus.The tumorectomy was performed.The histological examination revealed characteristic findings such as Schiller-Duval bodies,loose reticular structures,papillary structures,and eosinophilic globules.According to the immunohistochemical staining,the tumor tissue was positive for broad-spectrum cytokeratin,Spalt-like transcription factor 4,glypican-3,CD117,and epithelial membrane antigen.Based on the clinical information,histological features,and immunohistochemical staining profile,the tumor was diagnosed as a YST present in the abdominal wall.CONCLUSION Based on the clinical information,histological features,and immunohistochemical staining profile described above,the tumor was diagnosed as a primary YST in the abdominal wall.展开更多
Yolk sac tumors of the ovary are rare entities that account for 2% - 5% of all ovarian tumors. They represent the second most common histological variant of malignant germ cell tumors of the ovary after dysgerminomas....Yolk sac tumors of the ovary are rare entities that account for 2% - 5% of all ovarian tumors. They represent the second most common histological variant of malignant germ cell tumors of the ovary after dysgerminomas. Yolk sac tumors are most commonly encountered in women in the second and third decades. Microscopically, they are highly polymorphic and can present in a pure form or associated with another contingent of germ cell tumor. We report the case of a 26-year-old woman, who underwent surgery for a large right ovarian tumor rupturing into the peritoneal cavity. The ovarian tumor was revealed by ascites of great abundance and abdomino-pelvic pain. On histological examination, the diagnosis of yolk sac tumor in its pure and polyvesicular vitelline pattern was made. Through this observation, we propose to discuss the anatomoclinical particularities of these tumors by emphasizing the importance of histology for the diagnosis as well as the need of an early and appropriate management.展开更多
DHA-enriched eggs have gained popularity due to their unique nutritional value,but their flavor can be challenging for some consumers to accept.The study analyzed the correlation of lipids and flavors in DHA-enriched ...DHA-enriched eggs have gained popularity due to their unique nutritional value,but their flavor can be challenging for some consumers to accept.The study analyzed the correlation of lipids and flavors in DHA-enriched egg yolks using comprehensive lipidomics and volatile compound analysis.The results showed that 411 lipids were detected in two egg yolk samples.Among them,148 lipid species,including 48 DHA-containing lipids,were significantly higher in DHA-enriched egg yolks than in Common ones(P<0.05).Furthermore,of the 24 volatile compounds detected,the contents of benzaldehyde,heptanal,hexanal,decanal and 2-nonanone in DHA-enriched egg yolks were significantly higher than in Common egg yolks(P<0.05).The“fishy”smell characteristic of DHAenriched egg yolks was mainly caused by volatile aldehydes,which may be produced through the hydrolysis of lipids in the egg yolk to free fatty acids and further oxidation.Analysis of the correlation network diagram revealed that phospholipids containing docosahexaenoic acid(DHA),linoleic acid,or oleic acid chains were the main contributors to the characteristic flavor of DHA-enriched egg yolks.Overall,this study explored the effect of different lipids on the flavor of DHA-enriched egg yolks and provided a theoretical basis for the production and improvement of DHA-enriched eggs.展开更多
卵黄抗体(Immunoglobulin of yolk,IgY)因在水生动物疾病中具有被动免疫疗效而受到广泛的关注。本文综述了IgY基本结构和理化性质的研究进展,重点介绍了IgY在水生动物细菌和病毒感染防控、治疗中的潜在应用,为今后IgY的研究和水产养殖...卵黄抗体(Immunoglobulin of yolk,IgY)因在水生动物疾病中具有被动免疫疗效而受到广泛的关注。本文综述了IgY基本结构和理化性质的研究进展,重点介绍了IgY在水生动物细菌和病毒感染防控、治疗中的潜在应用,为今后IgY的研究和水产养殖中的应用提供参考。展开更多
基金the National Natural Science Foundation of China(No.21703191)Key Project of Strategic New Industry of Hunan Province(No.2016GK4005 and No.2016GK4030)Research Innovation Project for Graduate students of Hunan Province(No.CX2017B302)。
文摘Among the many strategies to fabricate the silicon/carbon composite,yolk/double-shells structure can be regarded as an effective strategy to overcome the intrinsic defects of Si-based anode materials for Li-ion batteries(LIBs).Hereon,a facile and inexpensive technology to prepare silicon/carbon composite with yolk/double-shells structure is proposed,in which the double buffering carbon shells are fabricated.The silicon/carbon nanoparticles with core-shell structure are encapsulated by SiO_(2)and external carbon layer,and it shows the yolk/double-shells structure via etching the SiO_(2)sacrificial layer.The multiply shells structure not only significantly improves the electrical conductivity of composite,but also effectively prevents the exposure of Si particles from the electrolyte composition.Meanwhile,the yolk/double-shells structure can provide enough space to accommodate the volume change of the electrode during charge/discharge process and avoid the pulverization of Si particles.Moreover,the as-prepared YDS-Si/C shows excellent performance as anode of LIBs,the reversible capacity is as high as 1066 mA h g^(-1) at the current density of 0.5 A g^(-1) after 200 cycles.At the same time,the YDS-Si/C has high capacity retention and good cyclic stability.Therefore,the unique architecture design of yolk/double-shells for Si/C composite provides an instructive exploration for the development of next generation anode materials of LIBs with high electrochemical performances and structural stability.
基金financially supported by the National Natural Science Foundation of China (Grant No. 22275173)the Open Project of State Key Laboratory of Environment-friendly Energy Materials (Grant No. 22kfhg10)。
文摘The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials.
基金supported by the Applied Basic Research of Shanxi Province(201901D211381)the Innovation-driven Development Capacity Enhancement Fund of Shanxi Province(SXYBKY2019041)+2 种基金National Key Research and Development Program(2021YFD1600604-03)Shanxi Scholarship Council of China(2021-068)Shanxi Agricultural University High-Level Talent Project(2021XG013)。
文摘In this study,the impacts of egg consumption on mice model of metabolic syndrome(Met S)were comparatively investigated.Mice were divided into five groups(n=8):normal diet group(ND),high-fat diet group(HFD),HFD with whole egg group(WE),HFD with free-yolk egg substitute group(YFES),and HFD with lovastatin group(Lov).Main biochemical indexes and a non-targeted lipidomic analysis were employed to insight the lipid profile changes in serum.It was revealed that WE could significantly improve serum biochemical indexes by reducing body weight,low-density lipoprotein cholesterol(LDL-C)and total cholesterol(TC),while increasing high-density lipoprotein cholesterol.YFES exhibited remarkably better performance in increasing phosphatidylglycerol and phosphatidic acids,while decreasing phosphatidylinositol than WE.A total of 50 differential lipids biomarkers tightly related to glycerophospholipids metabolism were screened out.Carnitine C18:2 and C12:1,SM(d18:0/12:0),and SM(d18:1/14:1)were significantly upregulated in YFES compared to WE.YFES reduced expression of SREBP-1c and Cpt1a,while did not affect the expression of PPAR-α.Sphingomyelin biomarkers were positively related to the TC(|r|>0.6),while PPAR-αwas negatively correlated with triglyceride and LDL-C levels.To sum up,YFES attenuated HFD-induced Met S by improving the serum phospholipids,which account for its modulation of glycerophospholipid metabolism.
基金supported by the National Natural Science Foundation of China(No.32071515 to SZ)Graduate Research and Practice Projects of Minzu University of China(BZKY2022042).
文摘The egg yolks of birds contain most of the maternally derived materials required for embryo development and are an important factor influencing embryo development and offspring viability.Individual variation in egg-laying date frequently occurs in passerines inhabiting highly seasonal environments.Females laying in early and late stages of the breeding season encounter different environment temperatures and food conditions,which can affect the levels of metabolities in their bodies,thereby altering the transmission of these materials to the eggs.We test a hypothesis that yolk small molecule compounds of Asian Short-toed Lark(Alaudala cheleensis)could vary between early(mid-May)and late(mid-June)broods.Using the UHPLC-MS/MS method,683 compounds belonging to 21 compound groups are detected in the yolks.The contents of 18 compounds are significantly different between early and late broods.Ten differential compounds are significantly higher in the early laid eggs,among whichγ-aminobutyric acid,creatine,prostaglandins,palmitoleic acid,linoleic acid,and trans linoleic acid are related to low environment temperature response.The eggs laid in late stage exhibit significantly higher levels of 5-L-glutamyl-L-alanine andγ-glutamate-leucine,1,3-dimethyluric acid and mannose,which may be attributed to females in the late group consuming more insects.We suggest conducting a comprehensive investigation to reveal the yolk small molecule compounds mediated maternal effects on offspring phenotypes under varying ecological conditions.
基金Supported by National Natural Science Foundation of China(Grant No.82103624 to Wang Y)Horizontal Project of Jinzhou Medical University(Grant No.STC-2S21094 to Yang J).
文摘BACKGROUND Extragonadal yolk sac tumors(YSTs)are rare,with only a low reported tumor occurrence outside the gonads locally and abroad.Extragonadal YSTs are usually a diagnostic challenge,because they are infrequent,but also because a thoughtful and detailed differential diagnostic process must be performed.CASE SUMMARY Here we present a case of an abdominal wall YST in a 20-year-old woman admitted with a tumor in the lower abdomen close to the umbilicus.The tumorectomy was performed.The histological examination revealed characteristic findings such as Schiller-Duval bodies,loose reticular structures,papillary structures,and eosinophilic globules.According to the immunohistochemical staining,the tumor tissue was positive for broad-spectrum cytokeratin,Spalt-like transcription factor 4,glypican-3,CD117,and epithelial membrane antigen.Based on the clinical information,histological features,and immunohistochemical staining profile,the tumor was diagnosed as a YST present in the abdominal wall.CONCLUSION Based on the clinical information,histological features,and immunohistochemical staining profile described above,the tumor was diagnosed as a primary YST in the abdominal wall.
文摘Yolk sac tumors of the ovary are rare entities that account for 2% - 5% of all ovarian tumors. They represent the second most common histological variant of malignant germ cell tumors of the ovary after dysgerminomas. Yolk sac tumors are most commonly encountered in women in the second and third decades. Microscopically, they are highly polymorphic and can present in a pure form or associated with another contingent of germ cell tumor. We report the case of a 26-year-old woman, who underwent surgery for a large right ovarian tumor rupturing into the peritoneal cavity. The ovarian tumor was revealed by ascites of great abundance and abdomino-pelvic pain. On histological examination, the diagnosis of yolk sac tumor in its pure and polyvesicular vitelline pattern was made. Through this observation, we propose to discuss the anatomoclinical particularities of these tumors by emphasizing the importance of histology for the diagnosis as well as the need of an early and appropriate management.
基金supported by the Opening Project of Hubei Key Laboratory of Lipid Chemistry and Nutrition(202106).
文摘DHA-enriched eggs have gained popularity due to their unique nutritional value,but their flavor can be challenging for some consumers to accept.The study analyzed the correlation of lipids and flavors in DHA-enriched egg yolks using comprehensive lipidomics and volatile compound analysis.The results showed that 411 lipids were detected in two egg yolk samples.Among them,148 lipid species,including 48 DHA-containing lipids,were significantly higher in DHA-enriched egg yolks than in Common ones(P<0.05).Furthermore,of the 24 volatile compounds detected,the contents of benzaldehyde,heptanal,hexanal,decanal and 2-nonanone in DHA-enriched egg yolks were significantly higher than in Common egg yolks(P<0.05).The“fishy”smell characteristic of DHAenriched egg yolks was mainly caused by volatile aldehydes,which may be produced through the hydrolysis of lipids in the egg yolk to free fatty acids and further oxidation.Analysis of the correlation network diagram revealed that phospholipids containing docosahexaenoic acid(DHA),linoleic acid,or oleic acid chains were the main contributors to the characteristic flavor of DHA-enriched egg yolks.Overall,this study explored the effect of different lipids on the flavor of DHA-enriched egg yolks and provided a theoretical basis for the production and improvement of DHA-enriched eggs.