期刊文献+
共找到231篇文章
< 1 2 12 >
每页显示 20 50 100
Night Vision Object Tracking System Using Correlation Aware LSTM-Based Modified Yolo Algorithm
1
作者 R.Anandha Murugan B.Sathyabama 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期353-368,共16页
Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and diffe... Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research. 展开更多
关键词 Object monitoring night vision image SSAN dataset adaptive internal linear embedding uplift linear discriminant analysis recurrent-phase level set segmentation correlation aware LSTM based yolo classifier algorithm
下载PDF
基于YOLO v5的直播油菜激光间苗系统设计与试验 被引量:1
2
作者 张昌松 李伟 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期40-52,共13页
间苗是保证直播油菜增产的一项关键技术措施,为解决人工间苗劳动强度大、机械间苗不精确的问题,采用机器视觉的方式,基于深度学习算法YOLO v5平台,设计并搭建自动间苗装置。机器视觉系统评估幼苗种群的合理密植情况,间苗算法以间距和幼... 间苗是保证直播油菜增产的一项关键技术措施,为解决人工间苗劳动强度大、机械间苗不精确的问题,采用机器视觉的方式,基于深度学习算法YOLO v5平台,设计并搭建自动间苗装置。机器视觉系统评估幼苗种群的合理密植情况,间苗算法以间距和幼苗叶展为评估标准,实现控制幼苗间距和筛选优质苗的功能。选用遗传算法对间苗行进路径进行规划,相较于未规划路径可缩短最低为50%的行进距离,最终采用激光器高温烧除的方式完成间苗作业。选取油菜苗作为试验材料,间苗阈值α是划定幼苗最小间距的参数,设置不同的间苗阈值α进行试验。结果表明,间除苗的数量随着间苗阈值α的增加而增加,幼苗平均密度下降的同时种群分布趋于均匀,对间除苗的叶展长度分类统计,α为0~75 mm时,间除苗叶展长度全部在0~20 mm范围;α为75~200 mm时,间除苗叶展长度为0~40 mm,其中叶展长度为20~40 mm的最高占比约为76%;α为200~350 mm时,间除苗叶展长度在40 mm以上的幼苗开始增加,最高占比约为14%,间除苗叶展长度梯次分布证明了间苗算法具备筛选优质苗的性能。间苗执行阶段耗时占据间苗作业总耗时的90%以上,以激光走线参数L、激光器功率P、间苗距离阈值为试验因素,三因素三水平正交试验结果表明:选择合适的激光走线参数L能有效提高间苗死亡率、降低间苗误伤率和减少间苗耗时,在参数L为30 mm、P为7.5 W、α为250 mm下开展土槽台架性能验证试验,激光间苗平均死亡率为93.29%,平均误伤率为5.19%,平均总耗时为15.19 min,为开发基于机器视觉的激光自动间苗机提供了理论基础和技术支撑。 展开更多
关键词 油菜 自动间苗 yolo v5 激光器 遗传算法
下载PDF
基于改进YOLO算法的无人机图像草原火灾检测研究
3
作者 刘志强 张朝阳 +1 位作者 王昱 张旭 《计算机技术与发展》 2024年第7期207-213,共7页
草原火灾一旦发生,受风力、地势等因素的影响迅速向四周无规则蔓延,形成面积不断扩大的条状燃烧带。为了提高草原火灾检测效率,结合无人机拍摄草原火灾的图像特征,研究基于改进YOLO算法的草原火灾检测方法。首先,针对火灾区域狭长、火... 草原火灾一旦发生,受风力、地势等因素的影响迅速向四周无规则蔓延,形成面积不断扩大的条状燃烧带。为了提高草原火灾检测效率,结合无人机拍摄草原火灾的图像特征,研究基于改进YOLO算法的草原火灾检测方法。首先,针对火灾区域狭长、火灾区域占比小的特点,对YOLO算法的Neck部分进行优化,提出一种具有全链接结构的特征提取网络FC-FP Neck,使语义特征和定位特征充分融合,提高网络的特征提取能力;其次,结合阈值分割技术提出一种改进的自适应加权损失函数,提升模型的收敛速度,同时解决火灾检测敏感度不足,容易造成误检的问题。在公开小目标检测数据集AI-TOD上测试改进算法的可行性,平均准确率提高了7.28%,平均精度提高了12.46%;在自建草原火灾数据集上平均精度达到了90.24%,平均准确率达到了87.33%。实验表明改进后的算法提高了草原火灾检测效率。 展开更多
关键词 草原火灾 yolo算法 特征金字塔网络 阈值分割 自适应加权损失函数
下载PDF
Misp-YOLO:加油站场景目标检测
4
作者 刘远红 程明皓 《吉林大学学报(信息科学版)》 CAS 2024年第1期168-175,共8页
针对Yolov3-Tiny算法在加油站监控场景检测时由于数据特征提取不充分而导致检测精度低、漏检率高等问题,提出一种基于加油站场景的Misp-YOLO(You Only Look Once)目标检测算法。首先引入Mosaic数据增强算法,使图片包含更多特征信息;其... 针对Yolov3-Tiny算法在加油站监控场景检测时由于数据特征提取不充分而导致检测精度低、漏检率高等问题,提出一种基于加油站场景的Misp-YOLO(You Only Look Once)目标检测算法。首先引入Mosaic数据增强算法,使图片包含更多特征信息;其次使用InceptionV2和PSConv(Poly-Scale Convolution)多尺度特征提取方法提升网络多尺度预测能力;最后结合scSE(Concurrent Spatial and Channel ‘Squeeze&Excitation’)注意力机制,重构主干网络输出特征。实验结果证明该算法具有较高检测准确度,并且检测速度满足实际需求。优化后的算法性能得到极大提升,可推广应用于其他目标检测中。 展开更多
关键词 目标检测 yolo算法 特征提取 注意力机制 多尺度预测
下载PDF
基于yolov5s的改进安全帽检测算法
5
作者 姚庆安 宋铭轩 +2 位作者 冯云丛 乔石丽 张语然 《长春工业大学学报》 CAS 2024年第2期138-146,共9页
针对现有安全帽检测算法对于远距离目标以及背景复杂的工地场景下的安全帽识别检测精度较低的问题,对yolov5s结构进行改进,主干网络中引入CoorAtt注意力机制增强特征提取能力,加强对重要的小目标信息的关注;然后将原模型中的SPP模块替换... 针对现有安全帽检测算法对于远距离目标以及背景复杂的工地场景下的安全帽识别检测精度较低的问题,对yolov5s结构进行改进,主干网络中引入CoorAtt注意力机制增强特征提取能力,加强对重要的小目标信息的关注;然后将原模型中的SPP模块替换成ASPP模块,通过使用空洞卷积层来代替池化层,降低了最大池化导致的特征信息丢失,同时采用不同的扩张率增大感受野,并且有效地提取不同尺度的特征;其次在颈部网络使用BiFPN结构,更高效地对特征信息进行融合;最后通过更改损失函数为WIOU通过引入动态非单调聚焦机制,平衡模型对各质量样本的关注,提高网络的整体性能,从而提高目标检测精度。为了测试算法的有效性,文中在公共数据集Safety Helmet Detection上进行实验。实验结果表明,改进后的yolov5s算法,目标检测mAP达到了88.5%,比改进之前的yolov5s算法提升了2.1%。 展开更多
关键词 目标检测 安全帽检测 yolo算法 ASPP 注意力机制
下载PDF
基于YOLO目标检测算法的人群多目标识别跟踪方法 被引量:1
6
作者 张四平 《智能计算机与应用》 2024年第1期152-155,共4页
目前对人群跟踪方法主要是建立跟踪模型,实现人群群体检查和跟踪,但是无法实现人群中多行人的识别和个体跟踪,造成人群跟踪与多目标识别存在效率低下和不准确。本文提出基于YOLO目标检测算法的人群多目标识别跟踪方法,通过对人群多目标... 目前对人群跟踪方法主要是建立跟踪模型,实现人群群体检查和跟踪,但是无法实现人群中多行人的识别和个体跟踪,造成人群跟踪与多目标识别存在效率低下和不准确。本文提出基于YOLO目标检测算法的人群多目标识别跟踪方法,通过对人群多目标的可见特征提取人群的行人轨迹和外观特征,实现人群多目标识别的跟踪。实验结果表明,该方法提高了人群多目标的识别效率,具有一定的实用性。 展开更多
关键词 yolo目标检测算法 人群多目标跟踪 识别方法
下载PDF
基于改进YOLO v7轻量化模型的自然果园环境下苹果识别方法 被引量:3
7
作者 张震 周俊 +1 位作者 江自真 韩宏琪 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期231-242,262,共13页
针对自然果园环境下苹果果实识别中,传统的目标检测算法往往很难在检测模型的检测精度、速度和轻量化方面实现平衡,提出了一种基于改进YOLO v7的轻量化苹果检测模型。首先,引入部分卷积(Partial convolution, PConv)替换多分支堆叠模块... 针对自然果园环境下苹果果实识别中,传统的目标检测算法往往很难在检测模型的检测精度、速度和轻量化方面实现平衡,提出了一种基于改进YOLO v7的轻量化苹果检测模型。首先,引入部分卷积(Partial convolution, PConv)替换多分支堆叠模块中的部分常规卷积进行轻量化改进,以降低模型的参数量和计算量;其次,添加轻量化的高效通道注意力(Efficient channel attention, ECA)模块以提高网络的特征提取能力,改善复杂环境下遮挡目标的错检漏检问题;在模型训练过程中采用基于麻雀搜索算法(Sparrow search algorithm, SSA)的学习率优化策略来进一步提高模型的检测精度。试验结果显示:相比于YOLO v7原始模型,改进后模型的精确率、召回率和平均精度分别提高4.15、0.38、1.39个百分点,其参数量和计算量分别降低22.93%和27.41%,在GPU和CPU上检测单幅图像的平均用时分别减少0.003 s和0.014 s。结果表明,改进后的模型可以实时准确地识别复杂果园环境中的苹果,模型参数量和计算量较小,适合部署于苹果采摘机器人的嵌入式设备上,为实现苹果的无人化智能采摘奠定了基础。 展开更多
关键词 苹果识别 自然果园环境 yolo v7 PConv 高效通道注意力机制 麻雀搜索算法
下载PDF
基于YOLO模型的车流量实时采集系统研究
8
作者 王金环 李宝敏 《计算机技术与发展》 2024年第9期209-214,共6页
对于一座现代化城市来说,合理的交通规划是一个城市高效运行的关键,作为交通规划的关键信息的城市车流量信息,原本需要人工进行识别、获取、验证的提取方式,随着计算机视觉技术的蓬勃发展弊端尽显,终将退出历史的舞台。为了提高城市车... 对于一座现代化城市来说,合理的交通规划是一个城市高效运行的关键,作为交通规划的关键信息的城市车流量信息,原本需要人工进行识别、获取、验证的提取方式,随着计算机视觉技术的蓬勃发展弊端尽显,终将退出历史的舞台。为了提高城市车流量信息的准确性和及时性,利用现有的计算机技术设计一种基于YOLO模型的车流量实时采集系统。该系统基于YOLO视觉检测模型,采用DeepSORT算法对检测到的目标车辆进行跟踪识别、判断车辆的运行状态、实现当前路段的车流量统计、对已记录车流量信息进行可视化展示以及数据输出等。该系统可以有效地代替传统消耗人力的死板工作,实现自动化数据收集以及道路交通情况的快速监测。该系统操作简单,交互性强,为城市的交通管理和交通规划提供准确实时的信息数据。 展开更多
关键词 目标检测 目标跟踪算法 数据处理 yolo模型 车流量 实时采集
下载PDF
YOLO系列目标检测算法综述 被引量:1
9
作者 徐彦威 李军 +1 位作者 董元方 张小利 《计算机科学与探索》 CSCD 北大核心 2024年第9期2221-2238,共18页
近年来,基于深度学习的目标检测算法是计算机视觉研究热点,YOLO算法作为一种优秀的目标检测算法,其发展历程中网络架构的改进,对于提高检测速度和精度起到了重要作用。对YOLOv1~YOLOv9的整体框架进行了横向分析,从网络架构(骨干网络、... 近年来,基于深度学习的目标检测算法是计算机视觉研究热点,YOLO算法作为一种优秀的目标检测算法,其发展历程中网络架构的改进,对于提高检测速度和精度起到了重要作用。对YOLOv1~YOLOv9的整体框架进行了横向分析,从网络架构(骨干网络、颈部层、头部层)、损失函数方面进行了对比分析,充分讨论了不同改进方法的优势和局限性,具体评估了改进方法对模型精度的提升效果。讨论了数据集的选择与构建方法、不同评价指标的选择依据,及其在不同应用场景中的适用性和局限性,深入研究了在五个应用领域(工业、交通、遥感、农业、生物)YOLO算法的具体改进,并对检测速度、检测精度及复杂度之间的平衡进行探讨。分析了YOLO在各领域的发展现状,通过具体实例总结YOLO算法研究中存在的问题,并结合应用领域的发展趋势,展望YOLO系列算法的未来,详细探讨了YOLO算法的四个研究方向(多任务学习、边缘计算、多模态结合、虚拟和增强现实技术)。 展开更多
关键词 yolo算法 目标检测 计算机视觉 特征提取 卷积神经网络
下载PDF
不平衡样本下的SA-YOLO自适应损失目标检测算法
10
作者 苏亚鹏 陈高曙 赵彤 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第3期411-426,共16页
样本不平衡现象是指在数据集中以背景为主的易样本数量较大,而以前景为主的难样本数量过少,即样本存在类间不平衡与难易不平衡问题。现有目标检测算法大多是基于候选区域的两阶段算法或基于回归的单阶段算法,当应用于不平衡样本时无法... 样本不平衡现象是指在数据集中以背景为主的易样本数量较大,而以前景为主的难样本数量过少,即样本存在类间不平衡与难易不平衡问题。现有目标检测算法大多是基于候选区域的两阶段算法或基于回归的单阶段算法,当应用于不平衡样本时无法避免训练中产生的预测框对大量样本过度依赖,从而导致模型过拟合且检测精度低,准确性、泛化性差。为了在不平衡样本下实现高效精准的目标检测,提出一种全新的SA-YOLO自适应损失目标检测算法。(1)针对样本不平衡问题,提出SA-Focal Loss函数,能够针对不同数据集与训练阶段对损失进行自适应调节,以达到平衡类间样本与难易样本的效果。(2)在多尺度特征预测机制下构造CSPDarknet53-SP网络架构,增强困难小目标样本全局特征的提取能力,达到提升难样本检测精度的效果。为验证SA-YOLO算法的性能,分别在样本不平衡数据集与COCO数据集上进行了大量仿真实验。结果表明:相较于现有YOLO系列算法最优指标值,SA-YOLO在不平衡数据集中mAP可达91.46%,提升10.87%,各类目标AP 50提升均在2%以上,有极强的专精性;在COCO数据集中mAP 50提升1.58%,各项指标均不低于最优值,有良好的有效性。 展开更多
关键词 不平衡样本 自适应损失 SA-yolo算法 SA-Focal Loss函数 CSPDarknet53-SP网络架构
下载PDF
面向拥挤行人检测的改进YOLOv7算法 被引量:2
11
作者 徐芳芯 樊嵘 马小陆 《计算机工程》 CAS CSCD 北大核心 2024年第3期250-258,共9页
针对拥挤行人检测场景下检测算法容易产生漏检与误检的问题,提出一种改进的YOLOv7拥挤行人检测算法。在骨干网络中引入BiFormer视觉变换器和改进的高效层聚合网络(RC-ELAN)模块,通过自注意力机制与注意力模块使骨干网络更多聚焦于被遮... 针对拥挤行人检测场景下检测算法容易产生漏检与误检的问题,提出一种改进的YOLOv7拥挤行人检测算法。在骨干网络中引入BiFormer视觉变换器和改进的高效层聚合网络(RC-ELAN)模块,通过自注意力机制与注意力模块使骨干网络更多聚焦于被遮挡行人的重要特征,有效缓解了目标特征缺失对检测造成的负面影响。采用基于双向特征金字塔网络思想的改进颈部网络,通过转置卷积和改进的Rep-ELAN-W模块使模型可以高效利用中低维特征图中的小目标特征信息,有效提升了模型的小目标行人检测性能。引入高效的完全交并比损失函数,使模型可以进一步收敛至更高精度。在含有大量小目标遮挡行人的WiderPerson数据集上的实验结果表明,与YOLOv7、YOLOv5、YOLOX算法相比,改进的YOLOv7算法的交并比阈值分别取0.5和0.5~0.95时的平均精准度提升了2.5和2.8、9.9和7.1、12.3和10.7个百分点,可较好地应用于拥挤行人检测场景。 展开更多
关键词 机器视觉 拥挤行人检测 注意力机制 yolo系列算法 双向特征金字塔网络
下载PDF
基于YOLOv5和ConvNext的钢铁表面缺陷检测研究
12
作者 李强强 皋军 +1 位作者 邵星 王翠香 《组合机床与自动化加工技术》 北大核心 2024年第10期160-165,170,共7页
为解决工业钢铁表面缺陷检测速度慢、准确度低问题,提出一种基于改进YOLOv5网络的检测方法。在YOLOv5网络的FPN特征金字塔模块中加入ECANet模块,以提高检测精度;利用K-Means算法在NEU-DET数据集上重新聚类,生成3组新的先验框,降低网络损... 为解决工业钢铁表面缺陷检测速度慢、准确度低问题,提出一种基于改进YOLOv5网络的检测方法。在YOLOv5网络的FPN特征金字塔模块中加入ECANet模块,以提高检测精度;利用K-Means算法在NEU-DET数据集上重新聚类,生成3组新的先验框,降低网络损失;针对钢铁缺陷的小目标特征,将ConvNext网络应用到YOLOv5的主干网络中,用ConvNext网络提取小目标缺陷特征,增强模型学习能力。实验结果表明,改进后的YOLOv5模型与原YOLOv5模型相比,mAP提升了3.84%,平均检测速率为36.9 frame/s,能够做到快速和准确的检测,满足实际应用需求。 展开更多
关键词 缺陷检测 K-MEANS算法 ConvNext ECANet yolo
下载PDF
基于改进YOLO v3的轴承端面缺陷检测算法
13
作者 余浪 苗鸿宾 +1 位作者 苏赫朋 申光鹏 《机床与液压》 北大核心 2024年第9期209-214,共6页
为提高轴承端面缺陷检测的速度以及检测精度,提出一种基于改进YOLO v3的轴承端面缺陷检测算法。首先,对图像数据集进行数据增强处理以防止产生过拟合现象;其次,通过改进K-means聚类算法重新聚类出目标检测的Anchor Boxes,并引入SKNet注... 为提高轴承端面缺陷检测的速度以及检测精度,提出一种基于改进YOLO v3的轴承端面缺陷检测算法。首先,对图像数据集进行数据增强处理以防止产生过拟合现象;其次,通过改进K-means聚类算法重新聚类出目标检测的Anchor Boxes,并引入SKNet注意力机制模块对原网络结构以及输出层结构进行改进;最后对改进的YOLO v3算法进行实验验证,并与原YOLO v3算法进行对比分析。结果表明,改进后的YOLO v3算法相比原YOLO v3算法对轴承端面缺陷检测的mAP值提升了7.03%,检测速度提升了34.7帧/s,验证了改进算法的有效性。 展开更多
关键词 轴承 yolo v3算法 缺陷检测 聚类算法
下载PDF
基于改进型YOLO网络目标检测算法在乳腺肿瘤超声图像检测中的应用研究
14
作者 杨涛 杨岚兰 +4 位作者 杨米扬 黄棋 叶双雨 付丽媛 赵红佳 《中国医学装备》 2024年第9期23-27,共5页
目的:实现基于改进型YOLO网络目标检测算法(YOLO算法)模型对乳腺肿瘤超声图像的检测方式优化升级。方法:选取Kaggle数据库上659幅乳腺肿瘤图像作为初始数据集,采用图像标注工具Labelimg对图中检测目标进行预标注,依照7∶3的比例将659幅... 目的:实现基于改进型YOLO网络目标检测算法(YOLO算法)模型对乳腺肿瘤超声图像的检测方式优化升级。方法:选取Kaggle数据库上659幅乳腺肿瘤图像作为初始数据集,采用图像标注工具Labelimg对图中检测目标进行预标注,依照7∶3的比例将659幅图像中的629幅图像划分为训练集与验证集,其余30幅图像作为测试集,对原YOLO算法引入卷积块注意力模块(CBAM)与双向特征金字塔网络(BiFPN)进行结构化改良并命名为YOLOv5-BiFPN-CBAM。将训练集与验证集置入原YOLO算法模型与YOLOv5-BiFPN-CBAM模型进行训练并经200轮迭代训练,将所得最佳权重文件用于测试集的最终化检验。结果:两种模型经过200轮迭代训练后,经验证集检验,两种模型对所有乳腺肿瘤超声图像检测的平均精度均值分别为72.1%和80.5%,将改良模型的最佳权重文件经测试集测试,改良模型相较于原始模型对图像中小目标的检测能力得到显著提升。结论:改进型YOLO算法模型与原YOLO算法模型相比,具有更高的对图像的识别度,同时提高了对乳腺肿瘤超声图像中小目标识别的精度与灵敏度,有助于提高临床中乳腺肿瘤的诊断效能。 展开更多
关键词 人工智能(AI) 目标检测 乳腺肿瘤 乳腺超声 yolo算法
下载PDF
基于YOLO-Pose的城市街景小目标行人姿态估计算法
15
作者 马明旭 马宏 宋华伟 《计算机工程》 CAS CSCD 北大核心 2024年第4期177-186,共10页
现有的姿态估计算法在城市街景中对小目标行人的检测效果不佳。针对该问题,提出一种基于YOLO-Pose的小目标行人姿态估计算法YOLO-Pose-CBAM。通过引入CBAM注意力机制模块,在不增加过多计算量的前提下,增强网络聚焦小目标行人区域的能力... 现有的姿态估计算法在城市街景中对小目标行人的检测效果不佳。针对该问题,提出一种基于YOLO-Pose的小目标行人姿态估计算法YOLO-Pose-CBAM。通过引入CBAM注意力机制模块,在不增加过多计算量的前提下,增强网络聚焦小目标行人区域的能力,提升算法对小目标行人的敏感度,同时在主干网络中使用4个不同尺寸的检测头,丰富算法对图片中不同大小行人的检测手段;在骨干网络和颈部之间架设2条跨层级联通道,提升浅层网络与深层网络之间的特征融合能力,进一步增强信息交流,降低小目标行人漏检率;引入SIoU重新定义边界框回归的定位损失函数,加快训练的收敛速度,提高检测精度;采用k-means++算法代替k-means算法对数据集中标注的锚框进行聚类,避免聚类中心初始化时导致的局部最优解问题,从而选择出更适合检测小目标行人的锚框。对比实验结果表明,在小目标行人Wider Keypoints数据集上,所提算法相较于YOLO-Pose和YOLOv7-Pose在平均精度上分别提升了4.6和6.5个百分比。 展开更多
关键词 yolo-Pose算法 姿态估计 跨层级联 CBAM注意力机制 SIo U损失函数 k-means++算法
下载PDF
MSA-YOLO:面向蒙皮表面缺陷的实时分割算法
16
作者 张纵驰 王华伟 周长威 《航空计算技术》 2024年第5期64-68,73,共6页
针对当前蒙皮外观人工检查效率低且精度不足的问题,提出了蒙皮表面缺陷实时分割算法MSA-YOLO。使用多尺度注意力MSA模块替换YOLOv8 seg网络骨干的C2f模块,改进特征表示的同时实现网络轻量化;在网络的小目标检测层加入eSE注意力机制层,... 针对当前蒙皮外观人工检查效率低且精度不足的问题,提出了蒙皮表面缺陷实时分割算法MSA-YOLO。使用多尺度注意力MSA模块替换YOLOv8 seg网络骨干的C2f模块,改进特征表示的同时实现网络轻量化;在网络的小目标检测层加入eSE注意力机制层,增强小目标缺陷的检测能力;最后,使用Inner CIOU损失函数代替原CIOU损失函数,使用辅助边框加速了样本的收敛过程。制作包含五种蒙皮表面典型缺陷的数据集进行验证,结果显示MSA-YOLO分割算法相较于原算法在目标框(BOX)和掩膜(MASK)的平均精度值(mAP)分别提高了4.6%和5.3%,且检测速度提升了9.1%;与现阶段流行的其他实时分割算法相比有一定的性能优势,对于实现蒙皮表面缺陷自动化分割具有一定意义。 展开更多
关键词 飞机蒙皮 缺陷检测 实例分割 yolo seg算法
下载PDF
基于YOLO算法的农作物病虫害识别研究综述
17
作者 万应霞 燕振刚 《热带农业工程》 2024年第1期25-28,共4页
农作物病虫害是农业生产管理的关键,为及时防控病虫害,人们通过各种技术手段识别和监测病虫害。本文通过介绍目标检测算法YOLO (You Only Look Once)的发展历程及其在农作物病虫害识别中的应用,着重分析了YOLO算法在提高农作物病虫害识... 农作物病虫害是农业生产管理的关键,为及时防控病虫害,人们通过各种技术手段识别和监测病虫害。本文通过介绍目标检测算法YOLO (You Only Look Once)的发展历程及其在农作物病虫害识别中的应用,着重分析了YOLO算法在提高农作物病虫害识别准确度和缩短识别时间的优势,以期为农业生产提供科学指导。 展开更多
关键词 yolo算法 农作物病虫害 目标检测 深度学习
下载PDF
YOLO算法及其在自动驾驶场景中目标检测综述 被引量:3
18
作者 邓亚平 李迎江 《计算机应用》 CSCD 北大核心 2024年第6期1949-1958,共10页
自动驾驶场景下的目标检测是计算机视觉中重要研究方向之一,确保自动驾驶汽车对物体进行实时准确的目标检测是研究重点。近年来,深度学习技术迅速发展并被广泛应用于自动驾驶领域中,极大促进了自动驾驶领域的进步。为此,针对YOLO(You On... 自动驾驶场景下的目标检测是计算机视觉中重要研究方向之一,确保自动驾驶汽车对物体进行实时准确的目标检测是研究重点。近年来,深度学习技术迅速发展并被广泛应用于自动驾驶领域中,极大促进了自动驾驶领域的进步。为此,针对YOLO(You Only Look Once)算法在自动驾驶领域中的目标检测研究现状,从以下4个方面分析。首先,总结单阶段YOLO系列检测算法思想及其改进方法,分析YOLO系列算法的优缺点;其次,论述YOLO算法在自动驾驶场景下目标检测中的应用,从交通车辆、行人和交通信号识别这3个方面分别阐述和总结研究现状及应用情况;此外,总结目标检测中常用的评价指标、目标检测数据集和自动驾驶场景数据集;最后,展望目标检测存在的问题和未来发展方向。 展开更多
关键词 目标检测 自动驾驶 实时检测 yolo算法 交通场景
下载PDF
适用于鱼眼图像的改进YOLOv7目标检测算法
19
作者 吴兆东 徐成 +2 位作者 刘宏哲 付莹 蹇木伟 《计算机工程与应用》 CSCD 北大核心 2024年第14期250-256,共7页
鱼眼相机捕获的图像具有宽视场、几何失真和尺度差异大等特点,这给基于标准卷积网络的目标检测器带来了巨大的挑战。现有的目标检测算法可以在网络结构设计、特征学习等方面进一步改进以适用于鱼眼图像上的失真目标检测任务。为减轻鱼... 鱼眼相机捕获的图像具有宽视场、几何失真和尺度差异大等特点,这给基于标准卷积网络的目标检测器带来了巨大的挑战。现有的目标检测算法可以在网络结构设计、特征学习等方面进一步改进以适用于鱼眼图像上的失真目标检测任务。为减轻鱼眼图像上径向畸变的影响,研究在YOLOv7主干引入多分支堆叠结构的多头注意力模块以捕获全局上下文信息,提高检测准确性。同时,在YOLOv7的Neck侧,使用简单高效的融合可变形卷积的层聚合结构以实现有效的多尺度特征融合,提高模型对失真目标的特征提取能力。提出的检测模型直接在鱼眼图像上执行,无须指定先验信息和校准。在公开的综合鱼眼图像数据集VOC_360上进行实验,结果表明,改进后的YOLOv7鱼眼图像目标检测器有效地提高了检测精度,mAP50、mAP50:95分别达到84.3%、70.4%,相比基准模型YOLOv7分别提升3.1个百分点、6.4个百分点。 展开更多
关键词 目标检测 鱼眼图像 多头注意力 可变形卷积 yolo算法
下载PDF
基于改进YOLO-V5算法的烟火检测方法
20
作者 张明振 段江忠 +2 位作者 梁肇伟 郭俊杰 柴大山 《中国安全科学学报》 CAS CSCD 北大核心 2024年第5期155-161,共7页
为减少自然环境中云、水雾、沙尘、灯光、日出、日落等干扰因素对烟雾、火焰目标检测准确性的影响,提出一种基于改进YOLO-V5算法的烟火检测算法。采用现场采集和网络爬取的方法获取烟雾、火焰目标图像和干扰类图像数据集,均衡学习训练样... 为减少自然环境中云、水雾、沙尘、灯光、日出、日落等干扰因素对烟雾、火焰目标检测准确性的影响,提出一种基于改进YOLO-V5算法的烟火检测算法。采用现场采集和网络爬取的方法获取烟雾、火焰目标图像和干扰类图像数据集,均衡学习训练样本,提高模型泛化能力;使用加权双向特征金字塔网络(BiFPN)替换原有的特征金字塔网络(FPN)+路径聚合网络(PAN)结构,对目标进行多尺度特征融合,加强模型特征融合能力;同时,运用距离交并比(DIoU)非极大值抑制(NMS)替代原有的NMS,加快检测框损失函数收敛速度,加强模型推理能力。结果表明:改进后的算法准确率为79.2%,召回率为68.6%,平均精度均值(mAP)为74.2%,误报率(FPR)为12.8%;相比于原YOLO-V5算法,改进后的算法准确率、召回率、mAP分别提高1.9%、0.9%、2.7%,检测识别FPR降低3.7%。 展开更多
关键词 yolo-V5算法 烟雾 火焰 目标检测 误报率(FPR)
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部