期刊文献+
共找到427篇文章
< 1 2 22 >
每页显示 20 50 100
基于改进YOLOv8的无人机航拍图像目标检测算法 被引量:5
1
作者 程换新 乔庆元 +1 位作者 骆晓玲 于沙家 《无线电工程》 2024年第4期871-881,共11页
针对现存无人机航拍图像目标检测算法检测精度较低、模型较为复杂的问题,提出一种改进YOLOv8的目标检测算法。在骨干网络引入多尺度注意力EMA,捕捉细节信息,以提高模型的特征提取能力;改进C2f模块,减小模型的计算量。提出了轻量级的Bi-Y... 针对现存无人机航拍图像目标检测算法检测精度较低、模型较为复杂的问题,提出一种改进YOLOv8的目标检测算法。在骨干网络引入多尺度注意力EMA,捕捉细节信息,以提高模型的特征提取能力;改进C2f模块,减小模型的计算量。提出了轻量级的Bi-YOLOv8特征金字塔网络结构改进YOLOv8的颈部,增强了模型多尺度特征融合能力,改善网络对小目标的检测精度。使用WIoU Loss优化原网络损失函数,引入一种动态非单调聚焦机制,提高模型的泛化能力。在无人机航拍数据集VisDrone2019上的实验表明,提出算法的mAP50为40.7%,较YOLOv8s提升了1.5%,参数量降低了42%,同时相比于其他先进的目标检测算法在精度和速度上均有提升,证明了改进算法的有效性和先进性。 展开更多
关键词 航拍图像 小目标检测 yolov8 Bi-yolov8 轻量化
下载PDF
基于YOLOv8的气象设备识别监控算法
2
作者 王祝先 叶润泽 +4 位作者 徐翌博 凌霄 白玉 宋邦钰 杨博寓 《应用科技》 CAS 2024年第4期83-90,共8页
在人烟稀少的地区,气象设备的监测与检查面临设备安置位置偏僻、缺乏实时巡检等问题。为解决这一难题,基于在图像识别领域表现卓越的YOLOv8算法,提出了一种新的气象设备识别监控模型,通过将原有的高效的空间金字塔池化(spatial pyramid ... 在人烟稀少的地区,气象设备的监测与检查面临设备安置位置偏僻、缺乏实时巡检等问题。为解决这一难题,基于在图像识别领域表现卓越的YOLOv8算法,提出了一种新的气象设备识别监控模型,通过将原有的高效的空间金字塔池化(spatial pyramid pooling-fast,SPPF)层替换为空间金字塔池化-全连接空间金字塔卷积(spatial pyramid pooling-fully connected spatial pyramid convolution,SPPFCSPC)层,成功降低了计算量,提升了气象设备检测的速度。为了进一步提升模型在复杂环境下的性能,提出了YOLOv8-SA模型,通过在主干网络(backbone)中加入多头自注意力机制,更精准地捕获图像中不同区域之间的关联性,有力地提高了模型的准确性。为了验证模型的有效性,创建了一个专门的气象设备数据集,并进行了对比实验。实验结果表明,本文提出的YOLOv8-SA模型在检测速度和准确性方面均取得了显著的提升,在自制的数据集中检测精度为98.6%,与传统的YOLOv8模型相比,检测精度提升了0.6%。该模型可有效解决人烟稀少地区气象设备的监测问题,为提升监测系统的实用性和效率提供新思路。 展开更多
关键词 气象设备 机器学习 深度学习 图像识别 yolov8 yolov8-SA 空间金字塔池化-全连接空间金字塔卷积 多头自注意力
下载PDF
基于改进YOLOv8的嵌入式道路裂缝检测算法 被引量:1
3
作者 耿焕同 刘振宇 +2 位作者 蒋骏 范子辰 李嘉兴 《计算机应用》 CSCD 北大核心 2024年第5期1613-1618,共6页
在边缘端设备部署YOLOv8L模型进行道路裂缝检测可以实现较高的精度,但难以保证实时检测。针对此问题,提出一种可部署到边缘计算设备Jetson AGX Xavier上的基于改进YOLOv8模型的目标检测算法。首先,利用部分卷积设计Faster Block结构以替... 在边缘端设备部署YOLOv8L模型进行道路裂缝检测可以实现较高的精度,但难以保证实时检测。针对此问题,提出一种可部署到边缘计算设备Jetson AGX Xavier上的基于改进YOLOv8模型的目标检测算法。首先,利用部分卷积设计Faster Block结构以替换YOLOv8 C2f模块中的Bottleneck结构,并将改进后的C2f模块记为C2f-Faster;其次,在YOLOv8主干网络中的每个C2f-Faster模块之后接一个SE(Squeeze-and-Excitation)通道注意力层,进一步提高检测的精度。在开源道路损害数据集RDD20(Road Damage Detection 20)上的实验结果表明:所提方法的平均F1得分为0.573,每秒检测帧数(FPS)为47,模型大小为55.5MB,相较于GRDDC2020(GlobalRoadDamageDetection Challenge 2020)的SOTA(State-Of-The-Art)模型,F1得分提高了0.8个百分点,FPS提高了291.7%,模型大小减小了41.8%,实现了在边缘设备上对道路裂缝实时且准确的检测。 展开更多
关键词 yolov8 目标检测 轻量化 注意力机制 道路裂缝
下载PDF
基于改进YOLOv8-Seg的苹果单枝条花序疏除方法
4
作者 司永胜 孔德浩 +2 位作者 王克俭 刘丽星 杨欣 《农业工程学报》 EI CAS CSCD 北大核心 2024年第14期100-108,共9页
针对苹果疏花作业中无法自动识别枝干以及缺乏花序疏除方法,该研究提出了一种适用于现代果园的苹果树单枝条花序疏除方法。首先,对YOLOv8-Seg模型进行改进:在Backbone部分添加GCT(Gaussian context transformer)模块,通过引入全局上下... 针对苹果疏花作业中无法自动识别枝干以及缺乏花序疏除方法,该研究提出了一种适用于现代果园的苹果树单枝条花序疏除方法。首先,对YOLOv8-Seg模型进行改进:在Backbone部分添加GCT(Gaussian context transformer)模块,通过引入全局上下文信息和调整通道的重要性,提高模型对遮挡目标的分割性能;在对应3个检测头的Neck部分的C2f模块内部增加EMA(efficient multi-scale attention)机制,通过并行子网结构和跨空间信息聚合更好地关注多尺度特征。其次,使用改进YOLOv8-Seg模型对单枝条中的花苞、花序、开放花朵和花枝四类目标进行实例分割。最后,基于分割结果应用多项式拟合曲线表征花枝,并计算花序间距离实现花序疏除。结果表明,改进的YOLOv8s-Seg模型在自建数据集mask水平的精确率、召回率和mAP分别达到了89.9%、89.5%和91%,比原模型分别提升了6.5、4.1和5.8个百分点。与主流分割模型Mask R-CNN,YOLACT,SOLOv2进行对比,mask水平的mAP分别高出10.8、12.3和9.1个百分点。花序疏除决策结果与人工决策结果对比误差不超过10%。该方法可应用于单枝条水平上的花序疏除任务,为苹果智能疏花提供技术支持。 展开更多
关键词 图像处理 模型 苹果疏花 深度学习 实例分割 yolov8-Seg 花序疏除
下载PDF
基于嵌入式和YOLOv8存储柜控制系统实验设计
5
作者 张浩鹏 王海珍 +1 位作者 范梅花 郭强 《实验室研究与探索》 CAS 北大核心 2024年第5期84-88,共5页
为实现存储柜高效和安全的管理,提出基于人脸检测的存储柜控制系统,系统包括终端、后端和前端。终端采用先训练后移植的方式将YOLOv8人脸检测算法部署在嵌入式Android设备,将人脸图片转化为人脸特征文本数据,Retrofit携带人脸特征和存... 为实现存储柜高效和安全的管理,提出基于人脸检测的存储柜控制系统,系统包括终端、后端和前端。终端采用先训练后移植的方式将YOLOv8人脸检测算法部署在嵌入式Android设备,将人脸图片转化为人脸特征文本数据,Retrofit携带人脸特征和存储柜相关数据向后端发送网络请求。后端采用若依框架、Jwt认证权限、Spring Security管理动态权限菜单和Spring Boot实现API接口,MyBatis管理MySQL数据库和Redis缓存数据。前端也采用若依框架,采用Vue2和Element UI通过Axios访问后端获取数据进行可视化。测试结果表明,系统识别效果好,执行器工作正常,数据可视化展示准确,系统运行稳定。 展开更多
关键词 yolov8 人脸检测 边缘计算 嵌入式Android设备
下载PDF
基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法 被引量:1
6
作者 崔克彬 焦静颐 《图学学报》 CSCD 北大核心 2024年第1期112-125,共14页
针对现有基于深度学习的钢材表面缺陷检测算法存在误检、漏检和检测精度低等问题,提出一种基于改进CBAM(modified CBAM,MCB)和可替换四头ASFF预测头(four-head ASFF prediction head,FAH)的YOLOv8钢材表面缺陷检测算法,简记为MCB-FAH-YO... 针对现有基于深度学习的钢材表面缺陷检测算法存在误检、漏检和检测精度低等问题,提出一种基于改进CBAM(modified CBAM,MCB)和可替换四头ASFF预测头(four-head ASFF prediction head,FAH)的YOLOv8钢材表面缺陷检测算法,简记为MCB-FAH-YOLOv8。通过加入改进后的卷积注意力机制模块(CBAM)对密集目标更好的确定;通过将FPN结构改为BiFPN更加高效的提取上下文信息;通过增加自适应特征融合(ASFF)自动找出最适合的融合特征;通过将SPPF模块替换为精度更高的SimCSPSPPF模块。同时,针对微小物体检测,提出了四头ASFF预测头,可根据数据集特点进行替换。实验结果表明,MCB-FAH-YOLOv8算法在VOC2007数据集上检测精度(mAP)达到了88.8%,在NEU-DET钢铁缺陷检测数据集上检测精度(mAP)达到了81.8%,较基准模型分别提高了5.1%和3.4%,该算法在牺牲较少检测速度的情况下取得较高的检测精度,很好的平衡了算法的精度和速度。 展开更多
关键词 MCB-FAH-yolov8 缺陷检测 注意力机制 四头ASFF预测头 特征融合
下载PDF
基于改进YOLOv8的城市排水管道缺陷检测算法研究
7
作者 杨帆 刘如飞 +3 位作者 刘扬胜 宋佰万 牛冲 来瑞鑫 《给水排水》 CSCD 北大核心 2024年第8期120-125,共6页
排水管道系统在城市管理中起着关键作用,为了实现排水管道缺陷的自动化检测,提出了一种基于改进YOLOv8的排水管道缺陷检测算法。首先针对管道图像亮度不均和网络泛化能力差的问题,采用Zero-DCE亮度增强和图像对比度调整相结合的方法进... 排水管道系统在城市管理中起着关键作用,为了实现排水管道缺陷的自动化检测,提出了一种基于改进YOLOv8的排水管道缺陷检测算法。首先针对管道图像亮度不均和网络泛化能力差的问题,采用Zero-DCE亮度增强和图像对比度调整相结合的方法进行数据增强处理。然后通过对YOLOv8算法添加Coordinate Attention注意力机制,增强算法对缺陷位置信息的感知和捕捉能力,以便于算法能够更好的识别排水管道细小缺陷。试验结果表明,相较于原始YOLOv8算法,改进后的算法精确度和召回率分别提升5%和7.9%。与其他三种网络相比,精确度和召回率分别提高了5.5%、7.6%、2.2%和7.9%、4.2%、2%。 展开更多
关键词 排水管道缺陷 yolov8 注意力机制 数据增强
下载PDF
基于改进YOLOv8的田间复杂环境下蓝莓成熟度检测
8
作者 田有文 覃上声 +2 位作者 闫玉博 王佳晖 姜凤利 《农业工程学报》 EI CAS CSCD 北大核心 2024年第16期153-162,共10页
为了快速精确识别田间复杂环境下的蓝莓果实的成熟度,该研究基于YOLOv8提出了一种蓝莓成熟度轻量化检测模型(MSC-YOLOv8)。首先,为了有效减少参数量,提高模型的运行速度,采用MobileNetV3为主干特征提取网络进行特征信息的提取,有利于田... 为了快速精确识别田间复杂环境下的蓝莓果实的成熟度,该研究基于YOLOv8提出了一种蓝莓成熟度轻量化检测模型(MSC-YOLOv8)。首先,为了有效减少参数量,提高模型的运行速度,采用MobileNetV3为主干特征提取网络进行特征信息的提取,有利于田间复杂环境下的检测。其次,在主干特征提取网络中插入卷积注意力机制模块(convolutional block attention module,CBAM),以提高深度学习网络对蓝莓特征提取的能力。最后,引入SCYLLAIoU(SIoU)作为YOLOv8的边界框回归损失函数,以解决真实框与预测框角度不匹配的问题,进一步提高蓝莓成熟度识别的准确率。通过试验得出改进的MSC-YOLOv8模型相较于YOLOv8平均精度均值(mean average precision,mAP)提升了3.9个百分点,单张图片平均检测时间比原YOLOv8减少了3.97 ms。改进的MSC-YOLOv8模型在蓝莓数据集上取得了较优的结果,与SSD和CenterNet模型对比,mAP分别提升了4.6和1.1个百分点,在检测速度和准确率方面均有优势。该研究可为田间复杂环境下蓝莓机器人采摘提供技术支持。 展开更多
关键词 蓝莓 yolov8 MobilenetV3 CBAM 成熟度 损失函数
下载PDF
改进YOLOv8的轻量级军事飞机检测算法
9
作者 刘丽 张硕 +2 位作者 白宇昂 李宇健 张初夏 《计算机工程与应用》 CSCD 北大核心 2024年第18期114-125,共12页
遥感图像军事飞机检测在侦察预警、情报分析等领域具有重要意义。为使军事飞机检测模型能在算力受限的设备上高效运行,从网络设计与模型压缩两个方面对YOLOv8n进行轻量化改进。在网络设计方面,使用FAS_C2f替换原始主干网络中的C2f模块,... 遥感图像军事飞机检测在侦察预警、情报分析等领域具有重要意义。为使军事飞机检测模型能在算力受限的设备上高效运行,从网络设计与模型压缩两个方面对YOLOv8n进行轻量化改进。在网络设计方面,使用FAS_C2f替换原始主干网络中的C2f模块,减少计算冗余并加快网络特征提取的速度;根据军事飞机目标的尺度特征对网络结构进行优化,缓解因过度下采样导致的小目标信息丢失问题;使用Inner-SIoU作为新的定位回归损失函数,提升对小目标样本的学习能力并加快回归边界框的收敛。在模型压缩方面,使用基于LAMP分数的通道剪枝对重设计后的模型进行压缩,进一步减少参数和模型大小;并利用通道级知识蒸馏(channel-wise knowledge distillation,CWD)将模型精度恢复到接近剪枝前的水平。实验结果表明,在公开军用飞机数据集MAR20上,轻量化后的模型mAP为97.2%,体积仅有0.7 MB,较原始模型缩小了88.3%,FPS提高了14帧/s,满足军事飞机目标检测的实时性要求。 展开更多
关键词 目标检测 军事飞机 yolov8 模型剪枝 知识蒸馏
下载PDF
基于改进YOLOv8的景区行人检测算法
10
作者 贵向泉 刘世清 +2 位作者 李立 秦庆松 李唐艳 《计算机工程》 CAS CSCD 北大核心 2024年第7期342-351,共10页
针对当前景区行人检测具有检测精度低、算法参数量大和现有公开数据集在小目标检测上存在限制等问题,创建TAPDataset行人检测数据集,弥补现有数据集在小目标检测方面的不足,并基于YOLOv8算法,构建一种检测精度高、硬件要求低的新模型YOL... 针对当前景区行人检测具有检测精度低、算法参数量大和现有公开数据集在小目标检测上存在限制等问题,创建TAPDataset行人检测数据集,弥补现有数据集在小目标检测方面的不足,并基于YOLOv8算法,构建一种检测精度高、硬件要求低的新模型YOLOv8-L。首先引入Depth Sep Conv轻量化卷积模块,降低模型的参数量和计算量。其次采用BiF orm er注意力机制和上采样算子CARAFE,加强模型对图像的语义理解和信息融合能力,提升模型的检测精度。最后增加一层小目标检测层来提取更多的浅层特征,从而有效地改善模型对小目标的检测性能。在TAPDataset、VOC 2007及TAP+VOC数据集上的实验结果表明,与YOLOv8相比,在FPS基本不变的情况下,在TAPDataset数据集上,模型的参数量减少了18.06%,mAP@0.5提高了5.51%,mAP@0.5∶0.95提高了6.03%;在VOC 2007数据集上,模型的参数量减少了13.6%,mAP@0.5提高了3.96%,mAP@0.5∶0.95提高了6.39%;在TAP+VOC数据集上,模型的参数量减少了14.02%,mAP@0.5提高了4.49%,mAP@0.5∶0.95提高了5.68%。改进算法具有更强的泛化性能,能够更好地适用于景区行人检测任务。 展开更多
关键词 智慧文旅 目标检测 注意力机制 轻量化网络 yolov8算法
下载PDF
应用动态激活函数的轻量化YOLOv8行人检测算法
11
作者 王晓军 陈高宇 李晓航 《计算机工程与应用》 CSCD 北大核心 2024年第15期221-233,共13页
针对传统激活函数不能特异性匹配每张特征图以达到最好的激活效果,设计一种动态激活函数,为特征图上的每个像素值添加各自的偏移量,以达到更优的区分目标和背景的效果;为使模型更好地关注目标,在主干加入注意力机制,以提高模型的准确性... 针对传统激活函数不能特异性匹配每张特征图以达到最好的激活效果,设计一种动态激活函数,为特征图上的每个像素值添加各自的偏移量,以达到更优的区分目标和背景的效果;为使模型更好地关注目标,在主干加入注意力机制,以提高模型的准确性。针对需要监测行人流量和进行交通管理的场景,如闯红灯检测、自动驾驶等实时性高,硬件条件有限的场景,应用通道剪枝技术对模型低权重参数进行修剪,为适应硬件加速特性,改进了剪枝方法,使保留通道数始终为8的整数倍。在推理部署阶段,融合Conv和BatchNorm权重,进一步缩小模型,减少参数量和浮点运算量。最终实验表明,改进的模型性能比其他目标检测模型均有一定提升,其中,比YOLOv8原模型在AP0.5:0.95上提升了0.013,在AP0.5上提升了0.005,参数量减少了4.8×10~6。 展开更多
关键词 yolov8 行人检测 激活函数 剪枝 权重融合
下载PDF
基于改进YOLOv8的煤矿输送带异物检测
12
作者 洪炎 汪磊 +2 位作者 苏静明 汪瀚涛 李木石 《工矿自动化》 CSCD 北大核心 2024年第6期61-69,共9页
现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8... 现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8主干网络中C2f模块的Bottleneck重新构建为DSBlock,在保持模型轻量化的同时提升检测性能;为增强对不同尺寸目标物体信息的获取能力,引入高效通道注意力(ECA)机制,并对ECA的输入层进行自适应平均池化和自适应最大池化操作,得到跨通道交互MECA模块,以增强模块的全局视觉信息,进一步提升异物识别精度;将YOLOv8的3个检测头修改为4个轻量化小目标检测头,以增强对小目标的敏感性,有效降低小目标异物的漏检率和错检率。实验结果表明:改进YOLOv8的精确度达91.69%,mAP@50达92.27%,较YOLOv8分别提升了3.09%和4.07%;改进YOLOv8的检测速度达73.92帧/s,可充分满足煤矿输送带异物实时检测的需求;改进YOLOv8的精确度、mAP@50、参数量、权重大小和每秒浮点运算数均优于SSD,Faster-RCNN,YOLOv5,YOLOv7-tiny等主流目标检测算法。 展开更多
关键词 输送带异物检测 yolov8 SE网络 高效通道注意力机制 轻量化 小目标检测 自适应平均池化 自适应最大池化
下载PDF
基于改进YOLOv8n的轻量化茶叶嫩芽检测方法
13
作者 潘海鸿 陈希良 +2 位作者 钱广坤 申毅莉 陈琳 《电子测量技术》 北大核心 2024年第7期149-156,共8页
为解决自然环境下茶叶嫩芽检测场景复杂,模型参数量大无法在嵌入式设备部署等问题,提出一种基于改进YOLOv8n的轻量化茶叶嫩芽检测方法。构建一种MFBNet轻量化骨干网络,引入MBConv模块后大大减少了模型计算量。同时在骨干网中加入CBAM注... 为解决自然环境下茶叶嫩芽检测场景复杂,模型参数量大无法在嵌入式设备部署等问题,提出一种基于改进YOLOv8n的轻量化茶叶嫩芽检测方法。构建一种MFBNet轻量化骨干网络,引入MBConv模块后大大减少了模型计算量。同时在骨干网中加入CBAM注意力模块,抑制无效信息,提高了模型检测精度;其次引入AKConv模块对VoVGSCSPC结构进行改进,提出全新的AVCStem模块,并将其替换颈部网络的C2f模块,进一步减少模型参数,提升嵌入式设备部署效率;最后采用GSConv模块替换颈部网络结构中的全部Conv模块,帮助模型进行快速计算,提高茶叶嫩芽的检测速率。结果表明,本文提出的模型比YOLOv8n原模型的mAP50和FPS分别提升了3.5%、55.6%,参数量减少了14.3%,且模型鲁棒性强,满足复杂场景下茶叶嫩芽的轻量化快速检测。 展开更多
关键词 茶叶嫩芽检测 轻量化 注意力机制 深度学习 yolov8n
下载PDF
面向工业表面缺陷检测的改进YOLOv8算法
14
作者 苏佳 贾泽 +1 位作者 秦一畅 张建燕 《计算机工程与应用》 CSCD 北大核心 2024年第14期187-196,共10页
针对工业缺陷对比度低、周围干扰信息多导致的误检率和漏检率高的问题,提出一种基于改进YOLOv8的工业表面缺陷检测算法EML-YOLO。通过设计一种高效大卷积模块(efficient large kernel,ELK),在保留空间信息的同时提供多尺度的特征表示,... 针对工业缺陷对比度低、周围干扰信息多导致的误检率和漏检率高的问题,提出一种基于改进YOLOv8的工业表面缺陷检测算法EML-YOLO。通过设计一种高效大卷积模块(efficient large kernel,ELK),在保留空间信息的同时提供多尺度的特征表示,从而提高模型的特征提取能力;提出多支路并行的特征融合模块(multi-scale context module,MCM),使得模型能够获取丰富的特征信息和全局上下文信息;在Neck模块中通过特征压缩和精简来减少模型的参数量和计算量,让模型更适用于资源有限的工业场景。采用GC10-DET和DeepPCB两个工业表面缺陷数据集来验证改进的EML-YOLO算法的有效性。实验结果表明,在GC10-DET数据集和DeepPCB数据集上,检测准确率上分别提高了4.3个百分点和2.9个百分点,参数量仅2.7×10^(6)。所提算法可以较好地应用于工业缺陷检测场景。 展开更多
关键词 缺陷检测 高效大卷积模块 多尺度特征 特征压缩 yolov8
下载PDF
基于改进YOLOv8的地铁列车焊缝缺陷轻量化检测方法
15
作者 李先旺 贺岁球 +3 位作者 贺德强 孙海猛 吴金鑫 单晟 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第3期540-552,共13页
针对现有的地铁列车车体焊接质量检测技术存在检测模型较大、检测精度和效率较低的问题,提出一种基于改进YOLOv8的焊缝缺陷轻量化检测方法。首先,利用相控阵超声波检测仪采集对接焊缝内部缺陷图像,通过图像预处理制作成焊缝缺陷数据集... 针对现有的地铁列车车体焊接质量检测技术存在检测模型较大、检测精度和效率较低的问题,提出一种基于改进YOLOv8的焊缝缺陷轻量化检测方法。首先,利用相控阵超声波检测仪采集对接焊缝内部缺陷图像,通过图像预处理制作成焊缝缺陷数据集。然后,在YOLOv8模型基础上,利用Inner-SIoU优化原有损失函数、采用C2f-PConv替换C2f模块、引入大型可分离核注意力(LSKA)模块和挤压激励(SE)注意力机制,建立了基于改进YOLOv8的地铁列车车体焊缝缺陷质量检测模型,以提高焊缝缺陷特征提取和多尺度特征融合的能力。最后,利用改进的YOLOv8模型对焊缝缺陷数据集进行训练和测试。结果表明,改进的YOLOv8模型大小为7.91 M,对于焊缝缺陷的检测精度达到98.30%,检测速度达到138.9帧/s,与YOLOv8原始模型相比,模型更小,检测精度更高。 展开更多
关键词 地铁列车 焊缝缺陷检测 yolov8 轻量化 相控阵超声波检测
下载PDF
基于改进YOLOv8的露天矿区行车障碍物检测
16
作者 顾清华 周琼 王丹 《黄金科学技术》 CSCD 北大核心 2024年第2期345-355,共11页
露天矿区场景复杂,行车障碍物检测受扬尘和颗粒物等粉尘噪声干扰严重,难以准确识别障碍物,尤其是光线较差的夜间,不利于做出正确决策,从而影响无人作业的安全性和整体效率。针对以上问题,提出了一种基于YOLOv8n模型的露天矿区行车障碍... 露天矿区场景复杂,行车障碍物检测受扬尘和颗粒物等粉尘噪声干扰严重,难以准确识别障碍物,尤其是光线较差的夜间,不利于做出正确决策,从而影响无人作业的安全性和整体效率。针对以上问题,提出了一种基于YOLOv8n模型的露天矿区行车障碍物检测算法YOLOv8n-Enhanced。该算法主要从3个方面进行了改进,具体包括:首先,针对受粉尘噪声干扰严重和夜间光线不足的问题,提出了C2fCA模块结构,提高了模型特征提取能力;其次,使用轻量级卷积技术GSConv和VoV-GSCSP模块,减轻模型复杂性,实现检测器更高的计算成本效益;最后,使用WIOU损失函数,提高了模型泛化能力。试验结果表明:改进算法在保持实时性的前提下,可将YOLOv8n的平均精度(mean Average Precision,mAP)分别提高1.8%和2.6%,实现白天与夜间场景下不同尺度的障碍物识别。 展开更多
关键词 露天矿区 无人驾驶 障碍物检测 yolov8检测模型 矿区复杂场景
下载PDF
CSD-YOLOv8s:基于无人机图像的密集小目标羊只检测模型
17
作者 翁智 刘海鑫 郑志强 《智慧农业(中英文)》 CSCD 2024年第4期42-52,共11页
[目的/意义]天然牧场下放牧牲畜数量的准确检测是规模化养殖场改造升级的关键。为满足规模化养殖场对大批羊群实现精准实时的检测需求,提出一种高精度、易部署的小目标检测模型CSD-YOLOv8s (CBAM SPPFCSPC DSConv-YOLOv8s),实现无人机... [目的/意义]天然牧场下放牧牲畜数量的准确检测是规模化养殖场改造升级的关键。为满足规模化养殖场对大批羊群实现精准实时的检测需求,提出一种高精度、易部署的小目标检测模型CSD-YOLOv8s (CBAM SPPFCSPC DSConv-YOLOv8s),实现无人机高空视角下小目标羊只个体的实时检测。[方法]首先,使用无人机获取天然草原牧场中包含不同背景及光照条件下的羊群视频数据并与下载的部分公开数据集共同构成原始图像数据。通过数据清洗和标注整理生成羊群检测数据集。其次,为解决羊群密集和相互遮挡造成的羊只检测困难问题,基于YOLO (You Only Look Once) v8模型构建具有跨阶段局部连接的SPPFCSPC (Spatial Pyramid Pooling Fast-CSPC)模块,提升网络特征提取和特征融合能力,增强模型对小目标羊只的检测性能。在模型的Neck部分引入了卷积注意力模块(Convolutional Block Attention Module, CBAM),从通道和空间两个维度增强网络的抗干扰能力,提升网络对复杂背景的抑制能力,进一步提高对密集羊群的检测性能。最后,为提升模型的实时性和可部署性,将Neck网络的标准卷积改为具有可变化内核的轻量卷积C2f_DS (C2f-DSConv)模块,减小了模型的参数量并提升了模型的检测速度。[结果和讨论]与YOLO、Faster R-CNN (Faster Regions with Convolutional Neural Networks)及其他经典网络模型相比,改进后的CSD-YOLOv8s模型在检测速度和模型大小相当的情况下,在羊群检测任务中具有更高的检测精度。Precision达到95.2%,mAP达到93.1%,FPS (Frames Per Second)达到87 f/s,并对不同遮挡程度的羊只目标具有较强的鲁棒性,有效解决了无人机检测任务中因羊只目标小、背景噪声大、密集程度高导致羊群漏检和误检严重的问题。公开数据集验证结果表明,提出的模型对其他不同物体的检测精度均有所提高,特别是在羊只检测方面,检测精度提升了9.7%。[结论]提出的CSD-YOLOv8s在无人机图像中更精准地检测草原放牧牲畜,对不同程度的聚集和遮挡目标实现精准检测,且具有较好的实时性,为养殖场大规模畜禽检测提供了技术支撑,具有广泛的应用潜力。 展开更多
关键词 羊只检测 yolov8 小目标 SPPFCSPC 注意力机制 深度可分离卷积
下载PDF
改进YOLOv8表格行列单元格结构检测
18
作者 任强 玛依热·依布拉音 艾斯卡尔·艾木都拉 《中国科技论文》 CAS 2024年第5期607-614,共8页
当前数字办公文档中涵盖了大量的表格数据,因此智能化表格结构识别需求日益剧增,但表格结构紧密相连且表格结构类型复杂多变,从而导致表格结构检测难度极大。针对该问题,在YOLOv8的基础上,以ICDAR19-cTDaR表格单元格结构和TabStructDB... 当前数字办公文档中涵盖了大量的表格数据,因此智能化表格结构识别需求日益剧增,但表格结构紧密相连且表格结构类型复杂多变,从而导致表格结构检测难度极大。针对该问题,在YOLOv8的基础上,以ICDAR19-cTDaR表格单元格结构和TabStructDB表格行列结构为实验对象,提出了一种新型表格行列单元格结构检测方法。首先,为了增强表格单元格及行列特征提取能力,引入了可变形卷积网络(deformable convolution network,DCN)。其次,引入了空间通道重构卷积(spatial and channel reconstruction convolution,SCConv),该卷积不仅特征提取能力强而且能够减少冗余特征从而降低复杂性和计算成本。根据以上引入的卷积设计了一个新的模块——DSC模块以替代C2f中的Bottlenck模块,并命名为C2fDSC模块。此外,为了进一步加强表格结构的角落局部特征提取,在YOLOv8的骨干网络上加入了显示中心特征调节(explicit visual center feature adjustment,EVC)模块。最后,将原模型的损失函数替换为MPDIoU,在解决密集目标回归精度问题时,相较于原始模型损失函数,MPDIoU损失函数边界框回归的准确性和效率更高。实验结果表明,该表格结构检测算法在数据集ICDAR19-cTDaR上取得了目前最佳的实验效果(SOTA),单元格查准率、查全率和F1值分别为91.7%、82.3%和86.7%,在数据集TabStructDB表格行列检测中也取得了非常实用的性能结果。 展开更多
关键词 yolov8 EVC模块 C2fDSC模块 MPDIoU损失函数 最佳性能
下载PDF
基于改进YOLOv8n模型的多品种葡萄簇检测方法
19
作者 张传栋 亓璐 丁华立 《中国农机化学报》 北大核心 2024年第9期220-226,共7页
葡萄簇目标的精准检测是实现估产、采摘等作业的前提,现有方法难以实现多品种葡萄簇的轻量化精准检测。为提高复杂自然场景下多品种葡萄簇检测准确性、鲁棒性与泛化性,提出一种基于改进YOLOv8n模型的多品种葡萄簇检测模型ESIC-YOLOv8n,... 葡萄簇目标的精准检测是实现估产、采摘等作业的前提,现有方法难以实现多品种葡萄簇的轻量化精准检测。为提高复杂自然场景下多品种葡萄簇检测准确性、鲁棒性与泛化性,提出一种基于改进YOLOv8n模型的多品种葡萄簇检测模型ESIC-YOLOv8n,该模型在YOLOv8n的Backbone和Neck网络中分别添加EMA和SA注意力模块,以加强网络的特征提取和多尺度特征融合能力,降低因遮挡或重叠对葡萄簇检测的干扰,提高检测精度和召回率;在Head把CIoU替换成Inner-CIoU,利用辅助框提高重叠目标检测的准确性,从而提升模型整体的检测准确性和泛化性。ESIC-YOLOv8n模型的检测精度为87.00%,召回率为81.60%,mAP为88.90%,F1值为84.21%,较原YOLOv8n模型分别提高1.05%、2.90%、1.48%和2.00%。结果表明,ESIC-YOLOv8n模型具有准确率高、泛化性好、轻量化等优点,可为葡萄产量估计、采摘等研究提供技术支持。 展开更多
关键词 葡萄簇检测 目标检测 yolov8n 注意力机制
下载PDF
基于改进YOLOv8n的变电设备红外图像实例分割算法
20
作者 李冰 杜喜英 +1 位作者 王玉莹 翟永杰 《电子测量技术》 北大核心 2024年第10期151-159,共9页
变电设备是电网输变电过程的重要组成部分,为保证电网的正常运行,需对变电设备进行故障诊断,红外图像中变电设备的精确分割是故障诊断的关键步骤。针对红外图像复杂场景中变电设备分割时存在的分割精度低和漏分割的问题,提出一种基于改... 变电设备是电网输变电过程的重要组成部分,为保证电网的正常运行,需对变电设备进行故障诊断,红外图像中变电设备的精确分割是故障诊断的关键步骤。针对红外图像复杂场景中变电设备分割时存在的分割精度低和漏分割的问题,提出一种基于改进YOLOv8n的变电设备红外图像实例分割算法。首先设计一种上下文引导的特征增强下采样块替换YOLOv8n中的下采样卷积层,充分利用上下文信息和全局信息,增强模型对复杂场景的理解能力;然后引入可变形卷积重构Backbone中的C2f模块,增强对不规则设备特征的提取能力;最后用Wise-IOUv2对损失函数进行优化,提高模型的泛化性和分类能力。使用变电设备红外图像数据集对该模型进行实验验证,实验结果表明,相较于YOLOv8n基准模型,本文所提方法的mAP50和mAP50:95分别提高了4.2%和3.5%,所提方法能够较好地解决复杂场景下设备漏分割的问题,有效提高变电设备实例分割的准确率。 展开更多
关键词 变电设备实例分割 yolov8n 可变形卷积 Wise-IOUv2
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部