期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Research on Track Fastener Service Status Detection Based on Improved Yolov4 Model
1
作者 Jing He Weiqi Wang Nengpu Yang 《Journal of Transportation Technologies》 2024年第2期212-223,共12页
As an important part of railway lines, the healthy service status of track fasteners was very important to ensure the safety of trains. The application of deep learning algorithms was becoming an important method to r... As an important part of railway lines, the healthy service status of track fasteners was very important to ensure the safety of trains. The application of deep learning algorithms was becoming an important method to realize its state detection. However, there was often a deficiency that the detection accuracy and calculation speed of model were difficult to balance, when the traditional deep learning model is used to detect the service state of track fasteners. Targeting this issue, an improved Yolov4 model for detecting the service status of track fasteners was proposed. Firstly, the Mixup data augmentation technology was introduced into Yolov4 model to enhance the generalization ability of model. Secondly, the MobileNet-V2 lightweight network was employed in lieu of the CSPDarknet53 network as the backbone, thereby reducing the number of algorithm parameters and improving the model’s computational efficiency. Finally, the SE attention mechanism was incorporated to boost the importance of rail fastener identification by emphasizing relevant image features, ensuring that the network’s focus was primarily on the fasteners being inspected. The algorithm achieved both high precision and high speed operation of the rail fastener service state detection, while realizing the lightweight of model. The experimental results revealed that, the MAP value of the rail fastener service state detection algorithm based on the improved Yolov4 model reaches 83.2%, which is 2.83% higher than that of the traditional Yolov4 model, and the calculation speed was improved by 67.39%. Compared with the traditional Yolov4 model, the proposed method achieved the collaborative optimization of detection accuracy and calculation speed. 展开更多
关键词 yolov4 model Service Status of Track Fasteners Detection and Recognition Data Augmentation Lightweight Network Attention Mechanism
下载PDF
基于改进YOLOv4-tiny的果园复杂环境下桃果实实时识别
2
作者 苑迎春 张傲 +2 位作者 何振学 张若晨 雷浩 《中国农机化学报》 北大核心 2024年第8期254-261,共8页
为实现果园复杂环境下的桃果实实时识别,提出一种基于YOLOv4-tiny的桃果实实时识别方法 YOLOv4-tinyPeach。通过在主干网络中引入卷积注意力模块CBAM,优化其通道维度和空间维度的特征信息;在颈部网络中添加大尺度浅层特征层,提高对小目... 为实现果园复杂环境下的桃果实实时识别,提出一种基于YOLOv4-tiny的桃果实实时识别方法 YOLOv4-tinyPeach。通过在主干网络中引入卷积注意力模块CBAM,优化其通道维度和空间维度的特征信息;在颈部网络中添加大尺度浅层特征层,提高对小目标识别精度;采用双向特征金字塔网络BiFPN对不同尺度特征信息进行融合。通过训练和比较,YOLOv4-tiny-Peach模型在测试集下的平均精度AP为87.88%,准确率P为91.81%,召回率R为73.84%,F1值为81.85%,相比于改进前,AP提升5.46%,P提升2.29%,R提升4.09%,F1提升3.44%。为检验改进模型在果园复杂环境下的适应性,在不同数目、不同成熟期和遮挡的情况下对果实图像进行识别,并与原模型识别效果进行对比,结果表明改进模型在三种情况下的识别精度均高于原模型,尤其在大视场和未熟期场景下模型改进效果显著。YOLOv4-tiny-Peach模型占用内存为27.4 MB,识别速度为49.76 fps,适用于农业嵌入式设备。为果园复杂环境下的桃果实自动采摘提供实时精准的目标识别指导。 展开更多
关键词 采摘机器人 目标识别模型 yolov4-tiny 果园 实时
下载PDF
Real-time hand tracking based on YOLOv4 model and Kalman filter 被引量:4
3
作者 Du Xuwei Chen Dong +2 位作者 Liu Huajiang Ma Zhaokun Yang Qianqian 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第3期86-94,共9页
Aiming at the shortcomings of current gesture tracking methods in accuracy and speed, based on deep learning You Only Look Once version 4(YOLOv4) model, a new YOLOv4 model combined with Kalman filter real-time hand tr... Aiming at the shortcomings of current gesture tracking methods in accuracy and speed, based on deep learning You Only Look Once version 4(YOLOv4) model, a new YOLOv4 model combined with Kalman filter real-time hand tracking method was proposed. The new algorithm can address some problems existing in hand tracking technology such as detection speed, accuracy and stability. The convolutional neural network(CNN) model YOLOv4 is used to detect the target of current frame tracking and Kalman filter is applied to predict the next position and bounding box size of the target according to its current position. The detected target is tracked by comparing the estimated result with the detected target in the next frame and, finally, the real-time hand movement track is displayed. The experimental results validate the proposed algorithm with the overall success rate of 99.43% at speed of 41.822 frame/s, achieving superior results than other algorithms. 展开更多
关键词 hand tracking You Only Look Once version 4(yolov4)model Kalman filter REAL-TIME
原文传递
基于YOLOv4模型的工件快速识别方法改进研究
4
作者 左皓楠 胡桂川 +2 位作者 蒲小霞 侯文赛 邓春燕 《重庆科技学院学报(自然科学版)》 CAS 2024年第2期56-61,共6页
为强化智能制造场景中机器人对工件的快速识别性能,从改进YOLOv4模型入手作了方法优化研究。首先,利用Ghost模块优化主干提取网络,以减少网络参数,提高网络检测速度;其次,引入DRConv卷积优化特征提取网络,以弥补对主干网络进行优化所造... 为强化智能制造场景中机器人对工件的快速识别性能,从改进YOLOv4模型入手作了方法优化研究。首先,利用Ghost模块优化主干提取网络,以减少网络参数,提高网络检测速度;其次,引入DRConv卷积优化特征提取网络,以弥补对主干网络进行优化所造成的精度损失;最后,引入GAM注意力模块,以强化在光线不足条件下的适应性。通过对YOLOv4模型的改进,在保证较高识别精度和检测速度的同时,使模型规模得以简化,使工件快速识别网络趋于轻量化。 展开更多
关键词 智能制造 工件识别 yolov4模型 轻量化网络 GhostNet
下载PDF
基于改进YOLOv4模型的番茄成熟度检测方法 被引量:3
5
作者 吕金锐 付燕 +2 位作者 倪美玉 曹为刚 杜子涛 《食品与机械》 CSCD 北大核心 2023年第9期134-139,共6页
目的:解决现有番茄成熟度检测方法存在的检测精度低和模型参数量多等问题。方法:基于番茄图像采集系统,提出了一种改进的YOLOv4模型用于番茄成熟度自动检测。将轻量级网络MobileNetv3网络引入模型替换CSPDarkNet53网络,降低模型复杂度。... 目的:解决现有番茄成熟度检测方法存在的检测精度低和模型参数量多等问题。方法:基于番茄图像采集系统,提出了一种改进的YOLOv4模型用于番茄成熟度自动检测。将轻量级网络MobileNetv3网络引入模型替换CSPDarkNet53网络,降低模型复杂度。在SPP模块中采用平均池化替代最大池化,提高算法对小目标的检测精度。在上采样过程中引入注意力机制CBAM增强深浅层特征融合能力,并通过试验验证所提模型的可行性。结果:与常规方法相比,试验方法在番茄成熟度检测中具有较高的检测mAP值和运行效率,且模型参数量较少,mAP值为92.50%,检测速度为37.1 FPS,模型参数量为48 M。结论:该番茄成熟度检测方法能有效降低模型参数和检测时间,具有较高的检测mAP值。 展开更多
关键词 番茄 成熟度 yolov4模型 MobileNetv3网络 注意力机制CBAM 平均池化
下载PDF
基于轻量化YOLOv4的发电机定子表面缺陷检测算法 被引量:7
6
作者 张凯 罗欣 +1 位作者 孙志刚 肖力 《计算机与数字工程》 2021年第4期686-691,710,共7页
目前大型发电机定子表面缺陷检测主要以抽转子的人工检测为主,存在检测周期长,准确率差等问题,论文提出一种基于轻量化YOLOv4的发电机定子表面缺陷检测算法,以腔内爬壁机器人为载体进行定子缺陷检测。将改进的MobileNetv3作为算法的主... 目前大型发电机定子表面缺陷检测主要以抽转子的人工检测为主,存在检测周期长,准确率差等问题,论文提出一种基于轻量化YOLOv4的发电机定子表面缺陷检测算法,以腔内爬壁机器人为载体进行定子缺陷检测。将改进的MobileNetv3作为算法的主干特征提取网络,通过在特征融合层引入CSP结构,融合卷积层和BN层的方法,使得论文算法模型体积较YOLOv4大幅减小。实验结果表明,论文算法在本文发电机定子表面缺陷数据集上的平均检测精度为98.3%,优于原始YOLOv4,模型体积比YOLOv4缩小了84.5%,检测速度提高了45.4%,表明了该方法在嵌入式平台上进行发电机定子缺陷实时检测的应用前景。 展开更多
关键词 定子缺陷检测 MobileNetV3 yolov4 模型轻量化 融合卷积层和BN层
下载PDF
基于改进YOLOV4网络模型的番茄果实检测 被引量:4
7
作者 张磊 刘琪芳 +2 位作者 聂红玫 王晨 牛帆 《中国农机化学报》 北大核心 2022年第12期162-169,共8页
果实识别是视觉检测技术重要的环节,其识别精度易受复杂的生长环境及果实状态的影响。以大棚环境下单个、一簇、光照、阴影、遮挡、重叠6种复杂生长状态下的番茄果实为对象,提出一种基于改进YOLOv4网络模型与迁移学习相结合的番茄果实... 果实识别是视觉检测技术重要的环节,其识别精度易受复杂的生长环境及果实状态的影响。以大棚环境下单个、一簇、光照、阴影、遮挡、重叠6种复杂生长状态下的番茄果实为对象,提出一种基于改进YOLOv4网络模型与迁移学习相结合的番茄果实识别方法。首先利用ImageNet数据集与VGG网络模型前端16卷积层进行模型参数预训练,将训练的模型参数初始化改进模型的权值以代替原始的初始化操作,然后使用番茄数据集在VGG19的卷积层与YOLOV4的主干网络相结合的新模型中进行训练,获得最优权重实现对复杂环境下的番茄果实进行检测。最后,将改进模型与Faster RCNN、YOLOv4-Tiny、YOLOv4网络模型进行比较。研究结果表明,改进模型在6种复杂环境下番茄果实平均检测精度值mAP达到89.07%、92.82%、92.48%、93.39%、93.20%、93.11%,在成熟、半成熟、未成熟3种不同成熟度下的F1分数值为84%、77%、85%,其识别精度优于比较模型。本文方法实现了在6种复杂环境下有效地番茄果实检测识别,为番茄果实的智能采摘提供理论基础。 展开更多
关键词 番茄 复杂环境 果实检测 网络模型 yolov4 迁移学习
下载PDF
基于YOLOv4模型剪枝的番茄缺陷在线检测 被引量:15
8
作者 梁晓婷 庞琦 +5 位作者 杨一 文朝武 李友丽 黄文倩 张驰 赵春江 《农业工程学报》 EI CAS CSCD 北大核心 2022年第6期283-292,共10页
为解决番茄缺陷检测过程中的精确性和实时性问题,该研究提出一种基于模型剪枝的番茄表面缺陷实时检测方法。采用模型剪枝的方法在YOLOv4网络模型基础上进行模型优化,首先将3个连续检测工位采集的RGB图像拼接生成YOLOv4网络的输入图像,... 为解决番茄缺陷检测过程中的精确性和实时性问题,该研究提出一种基于模型剪枝的番茄表面缺陷实时检测方法。采用模型剪枝的方法在YOLOv4网络模型基础上进行模型优化,首先将3个连续检测工位采集的RGB图像拼接生成YOLOv4网络的输入图像,然后采用通道剪枝和层剪枝的方法压缩YOLOv4网络模型,从而减少模型参数,提高检测速度,最后提出一种基于L1范数的非极大值抑制方法,用于在模型微调后去除冗余预测框,从而精准定位图像中的缺陷位置,并将模型部署到分级系统上进行实时检测试验。结果表明,该研究提出的YOLOv4P网络与原YOLOv4网络相比,网络模型尺寸和推理时间分别减少了232.40 MB和10.11 ms,平均精度均值(Mean Average Precision,mAP)从92.45%提高到94.56%,能满足实际生产中针对缺陷番茄进行精准、实时检测的要求,为番茄分级系统提供了高效的实时检测方法。 展开更多
关键词 机器视觉 模型 番茄缺陷 yolov4 模型剪枝
下载PDF
基于YOLOv4的空间红外弱目标检测 被引量:15
9
作者 刘杨帆 曹立华 +1 位作者 李宁 张云峰 《液晶与显示》 CAS CSCD 北大核心 2021年第4期615-623,共9页
在空间红外弱目标检测问题中,相关模板法和帧间差分法等传统算法判别率较低,且对数据质量要求较高。针对这一问题,本文提出了一种基于改进YOLOV4的空间红外弱目标检测方法,该算法首先针对空间不同红外目标建立了相应的数据集;以YOLOv4... 在空间红外弱目标检测问题中,相关模板法和帧间差分法等传统算法判别率较低,且对数据质量要求较高。针对这一问题,本文提出了一种基于改进YOLOV4的空间红外弱目标检测方法,该算法首先针对空间不同红外目标建立了相应的数据集;以YOLOv4为基础建立了空间目标检测任务专用的神经网络框架,利用k-means聚类算法重新构造先验框;针对红外弱目标的特性设计了多尺度融合算法来提高弱目标的检测精度;最后应用COCO数据集和实验室采集到的红外图像数据集对本算法进行了训练和测试。试验结果表明,本文改进算法较YOLOv4算法在检测的准确性上有明显提升,其平均准确率(AP)可达93.25%以上,检测速度达到了38.99 ms/frame,验证了算法对于空间红外弱目标检测的有效性,很好地满足了空间红外弱目标检测任务的需求。 展开更多
关键词 目标识别 红外弱目标 深度学习 yolov4模型
下载PDF
基于改进YOLOv4模型的群养生猪姿态检测 被引量:2
10
作者 李斌 刘东阳 +4 位作者 时国龙 慕京生 徐浩然 辜丽川 焦俊 《浙江农业学报》 CSCD 北大核心 2023年第1期215-225,共11页
为了提升猪舍环境下生猪姿态检测的速度和性能,在YOLOv4模型的基础上提出一种改进的Mini_YOLOv4模型。首先,该模型将YOLOv4的特征提取网络改为轻量级的MobileNetV3网络结构,以降低模型参数量;其次,在检测网络的CBL_block1、CBL_block2... 为了提升猪舍环境下生猪姿态检测的速度和性能,在YOLOv4模型的基础上提出一种改进的Mini_YOLOv4模型。首先,该模型将YOLOv4的特征提取网络改为轻量级的MobileNetV3网络结构,以降低模型参数量;其次,在检测网络的CBL_block1、CBL_block2模块中使用深度可分离卷积代替传统卷积,避免了复杂模型导致的内存不足和高延迟问题;最后,将原YOLOv4网络每个尺度的最后一层3×3卷积改为Inception网络结构,以提高模型在生猪姿态检测上的准确率。应用上述模型,对生猪的站立、坐立、腹卧、趴卧和侧卧5类姿态进行识别。结果显示,Mini_YOLOv4模型较YOLOv4模型在检测精度上提升了4.01百分点,在检测速度上提升近1倍,在保证识别精度的同时提升了实时性,可为生猪行为识别提供技术参考。 展开更多
关键词 yolov4模型 MobileNetV3网络 生猪姿态检测
下载PDF
一种基于YOLOv4⁃TIA的林业害虫实时检测方法 被引量:19
11
作者 候瑞环 杨喜旺 +1 位作者 王智超 高佳鑫 《计算机工程》 CAS CSCD 北大核心 2022年第4期255-261,共7页
针对现有基于深度学习的林业昆虫图像检测方法存在检测精度低和检测速度慢的问题,提出一种结合改进PANet结构与三分支注意力机制的目标检测方法YOLOv4-TIA。通过对样本数量较少的昆虫类别进行数据增强,实现样本均衡分布。利用三分支注... 针对现有基于深度学习的林业昆虫图像检测方法存在检测精度低和检测速度慢的问题,提出一种结合改进PANet结构与三分支注意力机制的目标检测方法YOLOv4-TIA。通过对样本数量较少的昆虫类别进行数据增强,实现样本均衡分布。利用三分支注意力机制改进YOLOv4中的CSPDarkNet53骨干网络,同时通过旋转操作和残差变换建立维度间的依存关系,以提高有效的特征通道权重,在PANet结构上增加将跳跃连接与跨尺度连接相结合的特征融合方式,从而获取更丰富的语义信息和位置信息。在此基础上,采用Focal loss函数优化分类损失,解决正负样本不均衡的问题。实验结果表明,该方法的精确率和召回率分别达到85.9%和91.2%,相比SSD、Faster R-CNN、YOLOv4方法,其在保证检测速度的同时,能够有效提高检测精度,且实现对林业害虫的实时精确监测。 展开更多
关键词 林业害虫检测 yolov4模型 深度学习 三分支注意力 Focal loss函数 加权双向特征金字塔网络
下载PDF
基于YOLOv4网络模型的金属表面划痕检测 被引量:5
12
作者 张博尧 冷雁冰 《兵工学报》 EI CAS CSCD 北大核心 2022年第S01期214-221,共8页
金属表面划痕检测旨在实现金属划痕的分类识别和尺度精确定位。由于划痕本身形态各异且其与背景的低对比度特性,当前基于传统图像处理方法难以精确实现划痕的定位与识别。为此提出一种基于小尺度卷积核的浅层神经网络模型,模型借鉴小目... 金属表面划痕检测旨在实现金属划痕的分类识别和尺度精确定位。由于划痕本身形态各异且其与背景的低对比度特性,当前基于传统图像处理方法难以精确实现划痕的定位与识别。为此提出一种基于小尺度卷积核的浅层神经网络模型,模型借鉴小目标检测相关理论,在数据层面对划痕进行增强,训练网络模型,实现表面划痕的精确检测。结果表明,相对于原始的YOLOv4网络模型而言,该网络模型且能够更好地避免不明显划痕的漏检测和误检测现象的出现,也能够更精确且完整地提取出贯穿式或较长的划痕。该模型完全能够满足生产线精确检验要求。 展开更多
关键词 金属表面 划痕检测 yolov4网络模型 NEU数据集
下载PDF
改进YOLOv4的野生菌视觉检测方法 被引量:1
13
作者 张泽冰 张冬妍 +2 位作者 娄蕴祎 崔明迪 王克奇 《计算机工程与应用》 CSCD 北大核心 2023年第20期228-236,共9页
人工搜寻野生香菇效率低下,且存在一定危险性;而对于复杂情况下小目标检测的算法研究多集中于精度提升,检测效率与模型参数量不满足实际需求。基于此,提出一种基于改进YOLOv4的机器视觉检测方法,在保证精度前提下,提升检测效率,满足嵌... 人工搜寻野生香菇效率低下,且存在一定危险性;而对于复杂情况下小目标检测的算法研究多集中于精度提升,检测效率与模型参数量不满足实际需求。基于此,提出一种基于改进YOLOv4的机器视觉检测方法,在保证精度前提下,提升检测效率,满足嵌入式设备的需求。以YOLOv4为框架,采用高效的ShuffleNetv2特征提取网络、轻量级的自适应空间特征融合(ASFF)结构减少网络参数和计算量,针对检测分支,将深度可分离卷积(DWConv)和金字塔卷积(PyConv)替代普通卷积以进行轻量化改进。在此基础上优化模型精度:网络输出端引入SA注意力模块以少量计算代价弥补轻量化改进造成的精度损失;最后Weight DIoU NMS算法优化预测框选取。利用1 112张野生蘑菇图片,按照8∶2的比例划分训练集与测试集。实验结果表明:改进YOLOv4模型检测结果 AP为88.76%,F1为0.858,FPS为67.93,模型权重尺寸为52.28 MB,相比于YOLOv4的AP为91.5%,F1为0.890,FPS为37.15,精度变化幅度小,速度提升82.9%,模型权重尺寸仅为原来的21.4%。网络模型在保证检测精度的同时,检测速度明显提升,可为野生菌嵌入式采摘设备提供理论支持。 展开更多
关键词 目标检测 野生香菇 yolov4 ShuffleNetv2 模型轻量化 检测精度优化
下载PDF
应用YOLOv4-tiny算法实现保护压板智能校核 被引量:6
14
作者 杨宗源 侯进 +3 位作者 周浩然 郝彦超 文志龙 李天宇 《科学技术与工程》 北大核心 2022年第2期570-576,共7页
目前继电保护压板的巡检校核仍以人工为主,为提高其工作的效率,提出了一种智能实时校核方法。该方法首先使用YOLOv4-tiny算法对压板的投退状态进行预测,然后使用腾讯开源的ncnn前向推理框架,对YOLO模型进行优化,最后将模型移植到移动端... 目前继电保护压板的巡检校核仍以人工为主,为提高其工作的效率,提出了一种智能实时校核方法。该方法首先使用YOLOv4-tiny算法对压板的投退状态进行预测,然后使用腾讯开源的ncnn前向推理框架,对YOLO模型进行优化,最后将模型移植到移动端,使用手机软件完成压板校核。经测试,模型的均值平均精度达到99.13%,平均预测速度达到每秒30张图片,并可以有效解决反光、遮挡等环境因素的影响,可以显著提升巡检工作的效率。 展开更多
关键词 保护压板 智能校核 yolov4-tiny ncnn模型 移动端
下载PDF
基于特征递归融合YOLOv4网络模型的春见柑橘检测与计数 被引量:18
15
作者 易诗 李俊杰 +1 位作者 张鹏 王丹丹 《农业工程学报》 EI CAS CSCD 北大核心 2021年第18期161-169,共9页
春见柑橘个体小、单株果树柑橘密集、柑橘之间的形态与颜色相似度高且易被树叶严重遮挡,这些特点给春见柑橘检测与计数带来了较大困难。该研究以实际春见果园环境中的春见柑橘作为检测与计数对象,提出了一种以春见柑橘为检测目标的基于... 春见柑橘个体小、单株果树柑橘密集、柑橘之间的形态与颜色相似度高且易被树叶严重遮挡,这些特点给春见柑橘检测与计数带来了较大困难。该研究以实际春见果园环境中的春见柑橘作为检测与计数对象,提出了一种以春见柑橘为检测目标的基于特征递归融合YOLOv4网络模型(YOLOv4 network model based on recursive fusion of features,FR-YOLOv4)。针对春见柑橘尺寸小的特点,FR-YOLOv4网络模型的主干特征提取网络采用了感受野更小的CSPResNest50网络,降低了小尺寸目标的特征图传不到目标检测器中的可能性;针对春见柑橘被遮挡和密集分布的情况,采用了递归特征金字塔(Recursive Feature Pyramid,RFP)网络来进行特征递归融合,提高了对果园环境下春见柑橘的检测精度。试验结果表明:FR-YOLOv4网络模型对于果园环境中春见柑橘的平均检测精度为94.6%,视频检测帧率为51帧/s。FR-YOLOv4网络模型相比于YOLOv4、单次多框检测器(Single Shot Multi-Box Detector,SSD)、CenterNet和更快速卷积神经网络(Faster-Region-Convolutional Neural Networks,Faster R-CNN)的平均检测精度分别提高了8.9、29.3、14.1和16.2个百分点,视频检测帧率分别比SSD、Faster R-CNN提高了17和33帧/s。FR-YOLOv4网络模型对于实际果园环境中春见柑橘的检测精度高,具备检测实时性,适用于春见果园中春见柑橘检测与计数。 展开更多
关键词 机器视觉 图像处理 模型 检测 春见柑橘 yolov4
下载PDF
基于Yolov4-Tiny与RANSAC算法的管纱识别抓取系统 被引量:2
16
作者 李乐乐 张团善 +1 位作者 马浩然 张越 《轻工机械》 CAS 2021年第4期68-73,共6页
针对络筒机依赖人工上纱的非自动化问题,课题组提出一种基于Yolov4-Tiny目标检测模型的识别抓取系统,实现了管纱的检测、定位及抓取任务。首先利用深度相机获取RGB-D图像,通过训练深度学习网络Yolov4-Tiny,生成预测结果;然后利用预测框... 针对络筒机依赖人工上纱的非自动化问题,课题组提出一种基于Yolov4-Tiny目标检测模型的识别抓取系统,实现了管纱的检测、定位及抓取任务。首先利用深度相机获取RGB-D图像,通过训练深度学习网络Yolov4-Tiny,生成预测结果;然后利用预测框信息将原始点云进行裁剪,采用快速点特征直方图与RANSAC算法进行配准;最后利用手眼标定的方法将深度图像坐标信息转换到机械臂坐标系下完成抓取。实验结果表明:系统管纱平均抓取成功率达到65%,在非结构化的环境中具有良好的抓取结果,满足管纱抓取的实际生产需求。 展开更多
关键词 机器视觉 RGB-D图像 RANSAC算法 yolov4-Tiny模型 点云配准
下载PDF
基于改进YOLOv4的无人机目标检测方法 被引量:12
17
作者 田港 张鹏 +1 位作者 邹金霖 赵晓林 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2021年第4期9-14,共6页
针对无人机平台由于内存、算力有限而导致检测模型部署困难、检测速度降低的问题,提出了一种基于YOLOv4的改进模型。首先,为了减小模型内存占用、节省计算资源,根据目标尺寸特点,对YOLOv4原模型的预测层进行了改进,将三尺度检测模型改... 针对无人机平台由于内存、算力有限而导致检测模型部署困难、检测速度降低的问题,提出了一种基于YOLOv4的改进模型。首先,为了减小模型内存占用、节省计算资源,根据目标尺寸特点,对YOLOv4原模型的预测层进行了改进,将三尺度检测模型改进为双尺度检测模型;其次,对双尺度检测模型进行正常训练,然后将其BN层的缩放因子进行稀疏训练,最后通过裁剪一定比例的通道数以再次减小模型内存占用提升检测速度。实验分析表明,在与原模型检测效果基本一样的情况下,最终改进模型的内存占用减少了60%,仅103 M,FPS提升了35%,达到了58帧/s。 展开更多
关键词 无人机 目标检测 yolov4 中小目标 双尺度检测模型 通道裁剪
下载PDF
一种轻量化YOLOv4的遥感影像桥梁目标检测算法 被引量:2
18
作者 余培东 王鑫 +2 位作者 江刚武 刘建辉 徐佰祺 《海洋测绘》 CSCD 北大核心 2022年第2期59-64,共6页
深度学习技术发展迅速,在目标检测中表现出良好的适应性。针对YOLOv4算法在遥感影像桥梁目标检测任务中的检测效率较低和模型轻量化不足问题,使用轻量化的MobileNetv3骨干网络替换原始CSPDarkNet53骨干网络,将传统卷积层替换为深度超参... 深度学习技术发展迅速,在目标检测中表现出良好的适应性。针对YOLOv4算法在遥感影像桥梁目标检测任务中的检测效率较低和模型轻量化不足问题,使用轻量化的MobileNetv3骨干网络替换原始CSPDarkNet53骨干网络,将传统卷积层替换为深度超参数化卷积层(DO_Conv),提出一种兼具精度和检测效率的轻量化模型。实验表明:比较原始YOLOv4算法,本文算法将模型权重降低55%,检测效率提升70%以上,证明了本文改进之处的有效性;在精度方面,本文算法在与SSD、RetinaNet、YOLOv3和CenterNet等经典目标检测算法比较中仍保持精度优势。与YOLOv4算法相比,本文算法在难度较低的检测任务中精度损失较低,但在检测难度较高的DOTA桥梁数据集中精度损失明显。 展开更多
关键词 桥梁目标检测 yolov4算法 MobileNetv3算法 深度超参数化卷积 轻量化模型
下载PDF
基于改进YOLOv4模型的无人机巡检图像杆塔缺陷检测方法研究 被引量:10
19
作者 陈杰 安之焕 +1 位作者 唐占元 卢志超 《电测与仪表》 北大核心 2023年第10期155-160,共6页
针对现有输电线路无人机巡检图像缺陷检测方法存在的精度低、耗时长等问题,为了实现输电线路杆塔鸟巢的快速和准确识别,基于无人机巡检图像采集与处理系统,提出了一种改进的YOLO4模型用于输电线路杆塔图像的鸟巢检测。采用轻型MobileNe... 针对现有输电线路无人机巡检图像缺陷检测方法存在的精度低、耗时长等问题,为了实现输电线路杆塔鸟巢的快速和准确识别,基于无人机巡检图像采集与处理系统,提出了一种改进的YOLO4模型用于输电线路杆塔图像的鸟巢检测。采用轻型MobileNetV2网络替换CSPDarkNet53网络,提高特征提取速度,在SPP模块中采用平均池化替换最大池化,提高算法对小目标的检测精度,引入注意力机制CBAM增强特征表达。通过试验验证了所提方法的可行性和优越性。结果表明,所提方法与常规检测方法相比,在输电线路杆塔图像缺陷检测中具有更优的检测精度和速度,检测精度达到94.40%,检测速度为60 FPS。所提研究为输电线杆塔缺陷检测方法的发展提供了一定的参考。 展开更多
关键词 输电线路 杆塔鸟窝 无人机巡检 yolov4模型 注意力机制CBAM MobileNetV2网络
下载PDF
基于改进YOLOv4模型的茶叶病害识别 被引量:9
20
作者 孙道宗 刘欢 +3 位作者 刘锦源 丁郑 谢家兴 王卫星 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2023年第9期145-154,共10页
【目的】提出了一种改进的YOLOv4模型,为自然环境下3种常见茶叶病害(茶白星病、茶云纹叶枯病和茶轮斑病)的快速精准识别提供支持。【方法】使用MobileNetv2和深度可分离卷积来降低YOLOv4模型的参数量,并引入卷积注意力模块对YOLOv4模型... 【目的】提出了一种改进的YOLOv4模型,为自然环境下3种常见茶叶病害(茶白星病、茶云纹叶枯病和茶轮斑病)的快速精准识别提供支持。【方法】使用MobileNetv2和深度可分离卷积来降低YOLOv4模型的参数量,并引入卷积注意力模块对YOLOv4模型进行识别精度改进。采用平均精度、平均精度均值、图像检测速度和模型大小作为模型性能评价指标,在相同的茶叶病害数据集和试验平台中,对改进YOLOv4模型与原始YOLOv4模型、其他目标检测模型(YOLOv3、SSD和Faster R-CNN)的病害识别效果进行对比试验。【结果】与原始YOLOv4模型相比,改进YOLOv4模型的大小减少了83.2%,对茶白星病、茶云纹叶枯病和茶轮斑病识别的平均精度分别提高了6.2%,1.7%和1.6%,平均精度均值达到93.85%,图像检测速度为26.6帧/s。与YOLOv3、SSD和Faster R-CNN模型相比,改进YOLOv4模型的平均精度均值分别提高了6.0%,13.7%和3.4%,图像检测速度分别提高了5.5,7.3和11.7帧/s。【结论】对YOLOv4模型所使用的改进方法具备有效性,所提出的改进YOLOv4模型可以实现对自然环境下3种常见茶叶病害的快速精准识别。 展开更多
关键词 茶白星病 茶云纹叶枯病 茶轮斑病 yolov4模型 茶叶病害识别
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部