期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
轻量化YOLOv5n的木材表面缺陷检测模型
1
作者 胡继文 张国梁 +1 位作者 李文浩 沈明哲 《林产工业》 北大核心 2024年第11期6-13,32,共9页
为解决当前木材表面缺陷检测模型计算量大,在移动端或嵌入式设备部署困难的问题,本文提出了一种基于轻量化改进YOLOv5n的模型--FCS-YOLOv5n。首先,引入FasterNet替换主干网络,减少计算冗余及内存访问数量。其次,使用采样算子Carafe,进... 为解决当前木材表面缺陷检测模型计算量大,在移动端或嵌入式设备部署困难的问题,本文提出了一种基于轻量化改进YOLOv5n的模型--FCS-YOLOv5n。首先,引入FasterNet替换主干网络,减少计算冗余及内存访问数量。其次,使用采样算子Carafe,进一步压缩模型参数量,保证语义信息获取的全面性。然后,添加参数量和计算量较小的SE注意力机制,提高特征提取和融合效果。最后,用Focal EIou作为损失函数,减少低质量目标框的影响。结果表明:轻量化改进后的参数量为287697,浮点运算量为0.7,相比基准及其他模型,参数量和浮点运算量均减少约90%,而检测精度仅下降0.1%。该模型在轻量化的同时能保持了良好的检测效果,为其在移动端或嵌入式设备上的部署奠定了基础。 展开更多
关键词 yolov5n FCS-yolov5n 木材表面缺陷检测 轻量化模型 FasterNet
下载PDF
基于改进YOLOv5n的轻量化海产生物目标检测
2
作者 张翔 张俊虎 +1 位作者 李海涛 李辉 《渔业现代化》 CSCD 北大核心 2024年第3期89-97,共9页
对于海产生物科考与捕捞等行业,在海上远洋的船只在利用水下机器人进行海产生物的捕捞与识别时,由于通信带宽受限,计算资源有限,而采用轻量化网络模型可以更好地适应这样的条件。为此,提出了一种改进YOLOv5n的海产生物目标检测模型。首... 对于海产生物科考与捕捞等行业,在海上远洋的船只在利用水下机器人进行海产生物的捕捞与识别时,由于通信带宽受限,计算资源有限,而采用轻量化网络模型可以更好地适应这样的条件。为此,提出了一种改进YOLOv5n的海产生物目标检测模型。首先,引入高效的轻量化卷积模块(Group Shuffle Convolution,Gsconv),对模型主体进行缩减;然后改进损失函数,引用α-giou损失函数进行优化,提升预测框回归精度;再引L1-norm正则化剪枝,裁剪不必要的通道以及相关的卷积核;最后采用L2知识蒸馏,将模型精度调整到接近剪枝前的水平。结果显示,与原有基线模型YOLOv5n相比,改进后的模型计算量下降了53%,参数量下降了51%。所提出的改进算法在保持模型性能的同时保证了轻量化处理的有效性。 展开更多
关键词 海产生物目标检测 yolov5n Gsconv 模型剪枝 知识蒸馏
下载PDF
基于YOLOv5n的轻量级织物疵点检测算法
3
作者 李洋 李敏 +2 位作者 黄政 董雄伟 朱立成 《毛纺科技》 CAS 北大核心 2024年第5期87-97,共11页
针对轻量级模型在检测织物疵点时精确率低的问题,在YOLOv5n的基础上提出一种上下文增强与混合感受野的织物疵点检测算法。首先,为主干网络设计了一种轻量扩张卷积空间金字塔模块,并将主干网络的下采样比增加至64,在增强上下文信息的同... 针对轻量级模型在检测织物疵点时精确率低的问题,在YOLOv5n的基础上提出一种上下文增强与混合感受野的织物疵点检测算法。首先,为主干网络设计了一种轻量扩张卷积空间金字塔模块,并将主干网络的下采样比增加至64,在增强上下文信息的同时提取更深层的语义信息,提高模型识别性能;其次,为颈部网络设计了一种混合感受野融合模块代替原C3模块并进行特征融合,提高极端长宽比目标的检测精度。实验表明:该算法在基于天池织物数据集上的IOU阈值为0.5时的平均精度均值mAP 50、精确率、召回率分别达到了93.1%、91.6%、89.1%,相较于原YOLOv5n算法分别提高了4.9%、7.3%、5.0%,且模型文件大小仅6.28 MB,更适用于织物疵点检测领域。 展开更多
关键词 疵点检测 深度学习 yolov5n 空间金字塔 感受野融合
下载PDF
Dim-YOLOv5n昏暗场景目标检测算法 被引量:1
4
作者 朱晓彤 张荣芬 +1 位作者 刘宇红 孙龙 《计算机工程与应用》 CSCD 北大核心 2024年第11期173-181,共9页
相比于正常光照场景,照明不良昏暗场景干扰因素较多,图像处理较为复杂,且现有的昏暗目标检测,存在参数量大,识别准确率低等不足。针对昏暗场景下目标检测算法中存在误检与漏检等问题,提出以YOLOv5n算法为基础进行改进的昏暗场景目标检... 相比于正常光照场景,照明不良昏暗场景干扰因素较多,图像处理较为复杂,且现有的昏暗目标检测,存在参数量大,识别准确率低等不足。针对昏暗场景下目标检测算法中存在误检与漏检等问题,提出以YOLOv5n算法为基础进行改进的昏暗场景目标检测算法Dim-YOLOv5n。利用嵌入全维动态卷积(omni-dimensional dynamic convolution,ODConv)的轻量化主干ODConv-MobileNetV2替换主干网络,在减少计算量的同时提高检测精度。基于RepGFPN(reparameterized generalized-FPN)方法设计更加轻量高效的LigGFPN(lightweight generalized-FPN)加强特征融合网络,以提高网络特征提取能力,并在此基础上,使用GhostConv(ghost convolution)替换传统卷积,以减少模型的参数量。实验结果表明,改进后算法与原算法相比,检测精度P和召回率R分别提高了5.3个百分点和5个百分点,平均精度均值mAP0.5:0.95和mAP0.5分别提升了8.2个百分点和4.6个百分点,改进的算法在保证模型较小的同时有效提高了检测准确率。 展开更多
关键词 昏暗图像 yolov5n 全维动态卷积(ODConv) MobileNetV2 RepGFPN GhostConv
下载PDF
基于改进Yolov5n的无人机对地面军事目标识别算法 被引量:1
5
作者 王乾胜 展勇忠 邹宇 《计算机测量与控制》 2024年第6期189-197,226,共10页
针对目前主流的目标检测算法在真实航拍战场数据背景下识别精度低、误检率与漏检率高等问题,对Yolo目标识别算法进行了研究,提出一种基于改进Yolov5n的轻量化航拍军事目标检测模型;首先,采用ECA注意力机制与主干网络C3模块融合,以解决... 针对目前主流的目标检测算法在真实航拍战场数据背景下识别精度低、误检率与漏检率高等问题,对Yolo目标识别算法进行了研究,提出一种基于改进Yolov5n的轻量化航拍军事目标检测模型;首先,采用ECA注意力机制与主干网络C3模块融合,以解决航拍图像背景复杂且存在相似目标干扰问题;其次,引入归一化高斯瓦萨斯坦距离(NWD)代替CIoU损失函数,提高对模糊小目标的检测识别;最后,采用GSConv轻量化卷积代替标准卷积,减轻模型重量;经过实验测试,改进后的算法模型平均检测精度达到81.5%,提升0.9个百分点,模型大小为3.4 MB,减轻0.4 MB,识别速度为每秒113帧;实验结果表明该模型在轻量化的同时保持着高精度的航拍军事目标检测。 展开更多
关键词 ECA NWD GSConv 军事目标识别 yolov5n
下载PDF
轻量化YOLOv5n的高精度垃圾检测算法 被引量:9
6
作者 涂成凤 易安林 +1 位作者 姚涛 贺文伟 《计算机工程与应用》 CSCD 北大核心 2023年第10期187-195,共9页
针对现有部署至移动设备或嵌入式设备的生活垃圾检测模型参数量多,计算量大,且识别种类较少等问题,对YOLOv5n目标检测算法进行了轻量化、高精度的优化研究。在YOLOv5n的架构上引入轻量级网络ShuffleNetv2与GhostNet实现了检测网络的轻量... 针对现有部署至移动设备或嵌入式设备的生活垃圾检测模型参数量多,计算量大,且识别种类较少等问题,对YOLOv5n目标检测算法进行了轻量化、高精度的优化研究。在YOLOv5n的架构上引入轻量级网络ShuffleNetv2与GhostNet实现了检测网络的轻量化;同时添加注意力机制SE增强特征提取能力,以及引入基于响应的知识蒸馏算法提升定位和分类的准确率,从而提高目标检测精度。实验结果表明,在HGI-30数据集上,优化后的YOLOv5n的参数量和计算量分别减少22.3%和23.3%,检测精度mAP0.5和mAP0.5:0.95分别增加1.6个百分点和2.6个百分点。 展开更多
关键词 yolov5n 轻量级网络 知识蒸馏 生活垃圾分类
下载PDF
驾驶员手机使用检测模型:优化Yolov5n算法
7
作者 王鑫鹏 王晓强 +3 位作者 林浩 李雷孝 李科岑 陶乙豪 《计算机工程与应用》 CSCD 北大核心 2023年第18期129-136,共8页
为进一步实现在移动设备或嵌入式设备上对手机使用的违法行为进行实时检测,通过优化Yolov5n算法提出了一种轻量化、高精度、实时性的检测模型。将Focal-EIoU Loss与FocalL1 Loss相结合来获得更加精确的框定位以及损失函数的更快收敛。利... 为进一步实现在移动设备或嵌入式设备上对手机使用的违法行为进行实时检测,通过优化Yolov5n算法提出了一种轻量化、高精度、实时性的检测模型。将Focal-EIoU Loss与FocalL1 Loss相结合来获得更加精确的框定位以及损失函数的更快收敛。利用Slimming剪枝算法来进一步提高模型的轻量化及计算效率。在模型微调时利用数据增强技术对微调操作进行指导,从而使模型能够获得更好的性能提升。在手机使用数据集上对改进方法进行消融实验,进一步验证检测模型的有效性。实验表明,优化后的模型在手机使用数据集及Pascal VOC 2012数据集上的检测精度分别提高了0.2、12.3个百分点,参数量减少44.4%,计算量分别减小45.2%、40%,有利于模型进一步在移动设备及嵌入式设备上的实时性检测。 展开更多
关键词 yolov5n算法优化 Slimming剪枝 Focal-EIoU Loss FocalL1 Loss 数据增强
下载PDF
基于改进YOLOV5n的绝缘子和间隔棒检测算法 被引量:2
8
作者 胡博宇 黄忠谋 +2 位作者 朱蔚健 李雪健 李勇 《广西电力》 2022年第6期42-46,共5页
轻量级神经网络的出现显著降低了目标检测算法在移动端部署的难度,当前已有许多运算量小、精度较高的卷积神经网络在多个公共数据集上取得了不错的效果。然而,在基于图像的电力巡检领域,图像中目标检测与识别的效率对于及时排除电力故... 轻量级神经网络的出现显著降低了目标检测算法在移动端部署的难度,当前已有许多运算量小、精度较高的卷积神经网络在多个公共数据集上取得了不错的效果。然而,在基于图像的电力巡检领域,图像中目标检测与识别的效率对于及时排除电力故障具有重要意义,尤其是针对基于无人机的巡检,实现在线实时的故障检测更有意义。为了实现绝缘子和间隔棒这些重要巡检目标的移动端实时检测,本文提出了一种基于YOLOV5n的针对电力设备检测与分类的轻量级网络模型,算法在YOLOV5n的基础上优化网络,通过减少一系列的卷积层并舍去一部分的捷径分支,提高网络的并行程度并降低网络的深度。最终设计出模型更轻量、精确度更高的YOLOV5n-1、YOLOV5n-2,基于自建的电力巡检数据集进行测试,实验结果表明,提出的算法比YOLOV5n减少了27%的GFLOPs,检测时间降低了24%,降低了硬件要求,更适合在移动端部署。 展开更多
关键词 智能巡检 人工智能 目标检测 yolov5n 绝缘子 间隔棒
下载PDF
基于改进YOLOv5n的红枣缺陷识别方法
9
作者 陈星宇 凡玉琪 +1 位作者 刘虎涛 蒋培宗 《信息与电脑》 2023年第14期181-186,共6页
针对新疆红枣产业在加工出售前需要在大量红枣中剔除有裂口、皱皮和变形等缺陷的红枣这一需求,文章提出一种基于改进YOLOv5n模型的红枣缺陷识别方法。该方法首先在YOLOv5n模型目标检测头部引入SEConv通道注意力机制的卷积操作,用于增强... 针对新疆红枣产业在加工出售前需要在大量红枣中剔除有裂口、皱皮和变形等缺陷的红枣这一需求,文章提出一种基于改进YOLOv5n模型的红枣缺陷识别方法。该方法首先在YOLOv5n模型目标检测头部引入SEConv通道注意力机制的卷积操作,用于增强模型的特征表示能力,其次使用C3替换SPPF操作加快识别速度,最后通过调整自适应锚定框,更好地适应红枣尺寸和长宽比。实验结果表明,改进后的模型缺陷识别准确度达到了95.8%,相比原模型提升了3.5个百分点,识别速度达到7.2ms,比原模型提升了20.9%。这意味着改进后的YOLOv5模型在保持高准确度的同时,能够更高效地处理大量红枣图像。 展开更多
关键词 红枣图像处理 yolov5n 缺陷识别
下载PDF
基于机器视觉的雨雾天驾驶辅助系统设计
10
作者 洪儒 于力涵 +1 位作者 戴安邦 谢迎娟 《计算机测量与控制》 2024年第3期259-266,共8页
随着私家车数量日益增多,雨雾天交通安全问题成为了亟待解决的难题;在嵌入式硬件资源有限的情况下,为驾驶用户设计了基于机器视觉的雨雾天语音辅助驾驶系统;系统结合了湿度传感器、轻量化去雾神经网络AOD-NET和目标检测模型YOLOv5n;在... 随着私家车数量日益增多,雨雾天交通安全问题成为了亟待解决的难题;在嵌入式硬件资源有限的情况下,为驾驶用户设计了基于机器视觉的雨雾天语音辅助驾驶系统;系统结合了湿度传感器、轻量化去雾神经网络AOD-NET和目标检测模型YOLOv5n;在目标检测模型YOLOv5n上,利用K-means++算法重新设计锚框,选取较优的骨干网络并利用模型剪枝进一步压缩模型大小;实验结果表明,改进的模型在Jetsonnano上的FPS达到了17.78,最终mAP在人工加雾、分辨率变化的TT100K (Tsinghua-Tencent 100K)数据集到达了65.8%,满足了正常天气与雨雾天气下的驾驶辅助实际应用。 展开更多
关键词 机器视觉 Jetson nano 雨雾天辅助驾驶 交通标志检测 AOD-NET去雾 yolov5n
下载PDF
基于深度学习的改进轻量化红外目标检测算法
11
作者 李晓光 何鑫 +1 位作者 张义伟 王嘉雯 《光电技术应用》 2024年第4期49-54,89,共7页
基于深度学习算法的红外目标检测与识别技术是学术界研究的一个重要领域。基于对红外目标检测与识别的高精度和算法的轻量化两个目标的前提之下,在YOLOv5n网络模型的基础上,首先使用扩张式残差卷积(DWR)替换网络中的C3模块,实现了网络... 基于深度学习算法的红外目标检测与识别技术是学术界研究的一个重要领域。基于对红外目标检测与识别的高精度和算法的轻量化两个目标的前提之下,在YOLOv5n网络模型的基础上,首先使用扩张式残差卷积(DWR)替换网络中的C3模块,实现了网络的轻量化,并且使网络可以灵活的提取不同尺度的特征。然后针对红外图像分辨率低且细节模糊的特点,用AF-FPN代替原来的FPN结构,提高了多尺度红外图像目标识别的能力。最后采用iRMB注意力机制插入到检测层,使得模型轻量化的同时检测精度仍能与原来的YOLOv5n相近。实验结果表明,改进模型较原YOLOv5n网络值提升了0.8%,模型体积下降了17%,实现了模型轻量化的同时基本不影响模型检测精度,满足体积小和轻量化需求,适合部署到嵌入式设备。 展开更多
关键词 红外目标 检测与识别 深度学习 轻量化 yolov5n
下载PDF
基于改进YOLOv5无人机图像目标检测算法 被引量:5
12
作者 罗旭鸿 刘永春 +1 位作者 楚国铭 蒲红平 《无线电工程》 北大核心 2023年第7期1528-1535,共8页
针对目前在无人机图像目标检测算法中存在漏检与误检、不能兼顾检测速度,并且不能很好地应用于移动设备端等问题,提出了以YOLOv5n算法为基础进行改进的无人机图像目标检测算法。在原有的网络结构中添加小目标检测层M,增强对小目标的检... 针对目前在无人机图像目标检测算法中存在漏检与误检、不能兼顾检测速度,并且不能很好地应用于移动设备端等问题,提出了以YOLOv5n算法为基础进行改进的无人机图像目标检测算法。在原有的网络结构中添加小目标检测层M,增强对小目标的检测能力;在主干特征提取网络中引入BoT模块,减少网络参数量计算并提高检测精度;在特征融合网络中添加CBAM注意力机制,有效抑制背景信息干扰;将网络的头部替换成解耦头部,增强网络的收敛效果。将改进的算法在处理后的VirDrone数据集上进行测试,实验结果表明,在YOLOv5n算法上整体平均精度均值提升了10.25%,检测精度提高了9.81%,改进后的算法在保证实时性的同时有效提高了检测精度。 展开更多
关键词 BOT 小目标检测 yolov5n CBAM 解耦头
下载PDF
融合多异构滤波器的轻型弱小目标检测网络 被引量:7
13
作者 赵菲 邓英捷 《光学学报》 EI CAS CSCD 北大核心 2023年第9期145-156,共12页
针对红外图像信息维度单一且弱小目标因特征不明显而难以检测的问题,将不同结构的多滤波器融入YOLOv5n网络,根据增强弱小目标和抑制背景干扰的不同特性分别选择三个异构滤波器作用于网络的多通道输入图像,从而丰富原始图像的信息维度,... 针对红外图像信息维度单一且弱小目标因特征不明显而难以检测的问题,将不同结构的多滤波器融入YOLOv5n网络,根据增强弱小目标和抑制背景干扰的不同特性分别选择三个异构滤波器作用于网络的多通道输入图像,从而丰富原始图像的信息维度,有效提升后端网络对复杂背景下弱小目标的适应能力;通过添加注意力模块、采用小锚框策略、裁剪网络深层分支等改进措施,在增强YOLOv5n网络弱小目标检测能力的同时,进一步减少了计算和存储资源需求。实验结果表明,所提出的算法能够有效检测红外复杂背景中的弱小目标,同时占用存储和计算资源更少,为算法部署在资源受限的嵌入式设备上提供了基础。 展开更多
关键词 机器视觉 红外弱小目标 资源受限 多异构滤波器 yolov5n
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部