Suspicious fall events are particularly significant hazards for the safety of patients and elders.Recently,suspicious fall event detection has become a robust research case in real-time monitoring.This paper aims to d...Suspicious fall events are particularly significant hazards for the safety of patients and elders.Recently,suspicious fall event detection has become a robust research case in real-time monitoring.This paper aims to detect suspicious fall events during video monitoring of multiple people in different moving back-grounds in an indoor environment;it is further proposed to use a deep learning method known as Long Short Term Memory(LSTM)by introducing visual atten-tion-guided mechanism along with a bi-directional LSTM model.This method contributes essential information on the temporal and spatial locations of‘suspi-cious fall’events in learning the video frame in both forward and backward direc-tions.The effective“You only look once V4”(YOLO V4)–a real-time people detection system illustrates the detection of people in videos,followed by a track-ing module to get their trajectories.Convolutional Neural Network(CNN)fea-tures are extracted for each person tracked through bounding boxes.Subsequently,a visual attention-guided Bi-directional LSTM model is proposed for the final suspicious fall event detection.The proposed method is demonstrated using two different datasets to illustrate the efficiency.The proposed method is evaluated by comparing it with other state-of-the-art methods,showing that it achieves 96.9%accuracy,good performance,and robustness.Hence,it is accep-table to monitor and detect suspicious fall events.展开更多
微动脉瘤是糖尿病视网膜病变的初期症状,消除该病灶可在早期非常有效地预防糖尿病视网膜病变。但由于视网膜结构复杂,同时眼底图像的成像由于患者、环境、采集设备等因素的不同会存在不同的亮度和对比度,现有的微动脉瘤检测算法难以实...微动脉瘤是糖尿病视网膜病变的初期症状,消除该病灶可在早期非常有效地预防糖尿病视网膜病变。但由于视网膜结构复杂,同时眼底图像的成像由于患者、环境、采集设备等因素的不同会存在不同的亮度和对比度,现有的微动脉瘤检测算法难以实现该病灶的精确检测和定位,为此本文提出嵌入SENet(squeeze-andexcitation networks)的改进YOLO(you only look once)v4自动检测算法。该算法在YOLOv4网络基础上,首先通过使用一种改进的快速模糊C均值聚类算法对目标样本进行先验框参数优化,以提高先验框与特征图的匹配度;然后,在主干网络嵌入SENet模块,通过强化关键信息,抑制背景信息,提高微动脉瘤的置信度;此外,还在网络颈部增加空间金字塔池化结构以增强主干网络输出特征的接受域,从而有助于分离出重要的上下文信息;最后,在Kaggle数据集上进行模型验证,并与其他方法进行对比。实验结果表明,与其他各种结构的YOLOv4网络模型相比,所提出的嵌入SENet的改进YOLOv4网络模型能显著提高检测结果(与原始YOLOv4相比Fscore提升了12.68%);与其他网络模型以及方法相比,所提出的嵌入SENet的改进YOLOv4网络模型的自动检测精度明显更优,且可实现精准定位。故本文所提出的嵌入SENet的改进YOLOv4算法性能较优,能准确、有效地检测并定位出眼底图像中的微动脉瘤。展开更多
文摘Suspicious fall events are particularly significant hazards for the safety of patients and elders.Recently,suspicious fall event detection has become a robust research case in real-time monitoring.This paper aims to detect suspicious fall events during video monitoring of multiple people in different moving back-grounds in an indoor environment;it is further proposed to use a deep learning method known as Long Short Term Memory(LSTM)by introducing visual atten-tion-guided mechanism along with a bi-directional LSTM model.This method contributes essential information on the temporal and spatial locations of‘suspi-cious fall’events in learning the video frame in both forward and backward direc-tions.The effective“You only look once V4”(YOLO V4)–a real-time people detection system illustrates the detection of people in videos,followed by a track-ing module to get their trajectories.Convolutional Neural Network(CNN)fea-tures are extracted for each person tracked through bounding boxes.Subsequently,a visual attention-guided Bi-directional LSTM model is proposed for the final suspicious fall event detection.The proposed method is demonstrated using two different datasets to illustrate the efficiency.The proposed method is evaluated by comparing it with other state-of-the-art methods,showing that it achieves 96.9%accuracy,good performance,and robustness.Hence,it is accep-table to monitor and detect suspicious fall events.
文摘微动脉瘤是糖尿病视网膜病变的初期症状,消除该病灶可在早期非常有效地预防糖尿病视网膜病变。但由于视网膜结构复杂,同时眼底图像的成像由于患者、环境、采集设备等因素的不同会存在不同的亮度和对比度,现有的微动脉瘤检测算法难以实现该病灶的精确检测和定位,为此本文提出嵌入SENet(squeeze-andexcitation networks)的改进YOLO(you only look once)v4自动检测算法。该算法在YOLOv4网络基础上,首先通过使用一种改进的快速模糊C均值聚类算法对目标样本进行先验框参数优化,以提高先验框与特征图的匹配度;然后,在主干网络嵌入SENet模块,通过强化关键信息,抑制背景信息,提高微动脉瘤的置信度;此外,还在网络颈部增加空间金字塔池化结构以增强主干网络输出特征的接受域,从而有助于分离出重要的上下文信息;最后,在Kaggle数据集上进行模型验证,并与其他方法进行对比。实验结果表明,与其他各种结构的YOLOv4网络模型相比,所提出的嵌入SENet的改进YOLOv4网络模型能显著提高检测结果(与原始YOLOv4相比Fscore提升了12.68%);与其他网络模型以及方法相比,所提出的嵌入SENet的改进YOLOv4网络模型的自动检测精度明显更优,且可实现精准定位。故本文所提出的嵌入SENet的改进YOLOv4算法性能较优,能准确、有效地检测并定位出眼底图像中的微动脉瘤。