Yttria stabilized zirconia (YSZ) has widely been used as electrolyte in solid oxide fuel cell (SOFC). The microstructure of YSZ related to the fabrication process was discussed in the paper. With YSZ nano-powders abou...Yttria stabilized zirconia (YSZ) has widely been used as electrolyte in solid oxide fuel cell (SOFC). The microstructure of YSZ related to the fabrication process was discussed in the paper. With YSZ nano-powders about 40-100 nm as raw material, the YSZ adobe was manufactured by tape calendering process. The named three-step sintering process was performed at 1000 ℃ for 2 h, then raised the temperature with normal rate and as soon as up to 1400 ℃, the furnace was controlled at 1250-1300 ℃ for 10-20 h. The high dense YSZs with the relative density of 96%-99% were obtained; the grain size of YSZ could be reduced to 0.5-3 μm. The above result is benefited to co-fired in the electrode-supported SOFCs.展开更多
The properties of yttria stabilized zirconia(YSZ) related to the sintering process were discussed.YSZ nano-powders about 40-100 nm as raw material,the sub-micrometer grain sizes such as 0.4-3 μm in YSZ were gotten ...The properties of yttria stabilized zirconia(YSZ) related to the sintering process were discussed.YSZ nano-powders about 40-100 nm as raw material,the sub-micrometer grain sizes such as 0.4-3 μm in YSZ were gotten by sintering process at 1300 ℃,which was performed at 1000 ℃ for 2 h,then raised the temperature at the rate of 50 ℃ / h to 1400 ℃,then decreased directly to 1300 ℃ in 30 minutes,finally at 1300 ℃ for 5-20 hours.The ratio of bigger grain size becomes larger as the holding time increasing at 1300 ℃.The grains less than 1 μm are about 50%,eg,43.2%,52.2% and 51.1% related to 1300 ℃ holding 5 hours,8 hours and 10 hours,respectively.As YSZ grain size became small,the electrical conductivities did not decrease,even increased,about 0.20 s/cm at 1000 ℃.The reduced sintering temperature and time were benefited to co-fire with the electrodes in electrode-supported SOFCs.展开更多
Yttria-stabilized zirconia(YSZ) is the most common electrolyte material for solid oxide fuel cells. Herein, we conducted a comparative study on the densification behavior of three different kinds of commercial 8 mol% ...Yttria-stabilized zirconia(YSZ) is the most common electrolyte material for solid oxide fuel cells. Herein, we conducted a comparative study on the densification behavior of three different kinds of commercial 8 mol% YSZ powders:(i) TZ-8Y(Tosoh, Japan),(ii) MELox 8Y(MEL Chemicals, UK), and(iii) YSZ-HT(Huatsing Power, China). The comparison was made on both the selfsupporting pellets and thin-film electrolytes coated onto a NiO–YSZ anode support. For the pellets, MELox 8Y showed the highest densification at lower sintering temperatures with 93% and 96% of the theoretical density at 1250 and 1300 ℃, respectively. Although YSZ-HT showed a higher sintering rate than TZ-8Y, a sintering temperature of 1350 ℃ was required for both the powders to reach 95% of the theoretical density. For the thin-film electrolytes, on the other hand, YSZ-HT showed the highest sintering rate with a dense microstructure at a co-sintering temperature of 1250 ℃. Our results indicate that besides the average particle size, other factors such as particle size distribution and post-processing play a significant role in determining the sintering rate and densification behavior of the YSZ powders. Additionally, a close match in the sintering shrinkage of the electrolyte and anode support is important for facilitating the densification of the thin-film electrolytes.展开更多
Spark-plasma sintering (SPS) process was used to sinter ZrO2 (8Y) powders, and a relative density of 99% has been reached at a low temperature (1350°C) and short dwelling time (10 min) compared to the conventiona...Spark-plasma sintering (SPS) process was used to sinter ZrO2 (8Y) powders, and a relative density of 99% has been reached at a low temperature (1350°C) and short dwelling time (10 min) compared to the conventional sintered identical samples (1450°C 4 h)(CS). By the X-ray diffraction (XRD) patterns, the microstructure of the SPS pellet and CS pellet are both indexed by the cubic unit cell (Fm3m). The finer crystallite size (D111) of the SPS pellet is 154 nm and D111 of the CS pellet is more than 1 μm. The AC impedance spectroscopy shows that the ionic conductivity of SPS pellet is different from that of CS pellet. The activation energy for the SPS ceramics, estimated from the slope in the range of 400–800°C, was 91 kJ mol?1, which is in good agreement with CS pellet (96 kJ mol?1), indicating that the conduction mechanism in SPS ceramics is similar to that in CS ceramics.展开更多
The yttria-stabilized zirconia(YSZ)film was fabricated on the La 0.8 Sr 0.2 MnO 3(LSM)substrate by electrochemical deposition.The effects of electrochemical deposition conditions on morphological structure of Y(OH) 3 ...The yttria-stabilized zirconia(YSZ)film was fabricated on the La 0.8 Sr 0.2 MnO 3(LSM)substrate by electrochemical deposition.The effects of electrochemical deposition conditions on morphological structure of Y(OH) 3 -Zr(OH) 4 film were studied.The optimal conditions for depositing homogeneous and compact hydroxide film were obtained.The experimental results show that the density of the electrophoretic deposition film is increased remarkably if electrochemical deposition is applied to fill in the pores.展开更多
Thermal barrier coatings (TBCs) with Y2O3-stabilized ZrO2 (YSZ) top coat play a very important role in advanced turbine blades by considerably increasing the engine efficiency and improving the performance of high...Thermal barrier coatings (TBCs) with Y2O3-stabilized ZrO2 (YSZ) top coat play a very important role in advanced turbine blades by considerably increasing the engine efficiency and improving the performance of highly loaded blades. However, at high temperatures, environment factors result in the failure of TBCs. The influence of calcium-magnesium-alumino-silicate (CMAS) is one of environment factors. Although thermo-physical effect is being paid attention to, the thermo-chemical reaction becomes the hot-spot in the research area of TBCs affected by CMAS. In this paper, traditional twolayered structured TBCs were prepared by electron beam physical vapor deposition (EB- PVD) as the object of study. TBCs coated with CMAS were heated at 1240℃ for 3 h. Additionally, 15 wt.% simulated molten CMAS powder and YSZ powder were mixed and heated at 1240℃ or 1350℃ for 48 h. SEM and EDS were adopted to detect morphology and elements distribution. According to XRD and TEM results, it was revealed that CMAS react with YSZ at high temperature and form ZrSiO4, Ca0.2Zr0.8O1.8 and Ca0.15Zr0.85O1.85 after reaction, as a result, leading to the failure of TBCs and decreasing the TBC lifetime.展开更多
基金The project was financiallysupportedby Ministry of Education,China(No.106087)and 863 Program of National High Technology Research Development Project,China(2005AA501050).
文摘Yttria stabilized zirconia (YSZ) has widely been used as electrolyte in solid oxide fuel cell (SOFC). The microstructure of YSZ related to the fabrication process was discussed in the paper. With YSZ nano-powders about 40-100 nm as raw material, the YSZ adobe was manufactured by tape calendering process. The named three-step sintering process was performed at 1000 ℃ for 2 h, then raised the temperature with normal rate and as soon as up to 1400 ℃, the furnace was controlled at 1250-1300 ℃ for 10-20 h. The high dense YSZs with the relative density of 96%-99% were obtained; the grain size of YSZ could be reduced to 0.5-3 μm. The above result is benefited to co-fired in the electrode-supported SOFCs.
基金Funded by the National Natural Science Foundation of China (NSFC)(No. 50730004)the New Century Elitist Project (No. NCET-06-0203)
文摘The properties of yttria stabilized zirconia(YSZ) related to the sintering process were discussed.YSZ nano-powders about 40-100 nm as raw material,the sub-micrometer grain sizes such as 0.4-3 μm in YSZ were gotten by sintering process at 1300 ℃,which was performed at 1000 ℃ for 2 h,then raised the temperature at the rate of 50 ℃ / h to 1400 ℃,then decreased directly to 1300 ℃ in 30 minutes,finally at 1300 ℃ for 5-20 hours.The ratio of bigger grain size becomes larger as the holding time increasing at 1300 ℃.The grains less than 1 μm are about 50%,eg,43.2%,52.2% and 51.1% related to 1300 ℃ holding 5 hours,8 hours and 10 hours,respectively.As YSZ grain size became small,the electrical conductivities did not decrease,even increased,about 0.20 s/cm at 1000 ℃.The reduced sintering temperature and time were benefited to co-fire with the electrodes in electrode-supported SOFCs.
基金supported by National Aeronautics and Space Administration (NASA) through Contract No.NNX15CC12C
文摘Yttria-stabilized zirconia(YSZ) is the most common electrolyte material for solid oxide fuel cells. Herein, we conducted a comparative study on the densification behavior of three different kinds of commercial 8 mol% YSZ powders:(i) TZ-8Y(Tosoh, Japan),(ii) MELox 8Y(MEL Chemicals, UK), and(iii) YSZ-HT(Huatsing Power, China). The comparison was made on both the selfsupporting pellets and thin-film electrolytes coated onto a NiO–YSZ anode support. For the pellets, MELox 8Y showed the highest densification at lower sintering temperatures with 93% and 96% of the theoretical density at 1250 and 1300 ℃, respectively. Although YSZ-HT showed a higher sintering rate than TZ-8Y, a sintering temperature of 1350 ℃ was required for both the powders to reach 95% of the theoretical density. For the thin-film electrolytes, on the other hand, YSZ-HT showed the highest sintering rate with a dense microstructure at a co-sintering temperature of 1250 ℃. Our results indicate that besides the average particle size, other factors such as particle size distribution and post-processing play a significant role in determining the sintering rate and densification behavior of the YSZ powders. Additionally, a close match in the sintering shrinkage of the electrolyte and anode support is important for facilitating the densification of the thin-film electrolytes.
文摘Spark-plasma sintering (SPS) process was used to sinter ZrO2 (8Y) powders, and a relative density of 99% has been reached at a low temperature (1350°C) and short dwelling time (10 min) compared to the conventional sintered identical samples (1450°C 4 h)(CS). By the X-ray diffraction (XRD) patterns, the microstructure of the SPS pellet and CS pellet are both indexed by the cubic unit cell (Fm3m). The finer crystallite size (D111) of the SPS pellet is 154 nm and D111 of the CS pellet is more than 1 μm. The AC impedance spectroscopy shows that the ionic conductivity of SPS pellet is different from that of CS pellet. The activation energy for the SPS ceramics, estimated from the slope in the range of 400–800°C, was 91 kJ mol?1, which is in good agreement with CS pellet (96 kJ mol?1), indicating that the conduction mechanism in SPS ceramics is similar to that in CS ceramics.
文摘The yttria-stabilized zirconia(YSZ)film was fabricated on the La 0.8 Sr 0.2 MnO 3(LSM)substrate by electrochemical deposition.The effects of electrochemical deposition conditions on morphological structure of Y(OH) 3 -Zr(OH) 4 film were studied.The optimal conditions for depositing homogeneous and compact hydroxide film were obtained.The experimental results show that the density of the electrophoretic deposition film is increased remarkably if electrochemical deposition is applied to fill in the pores.
文摘Thermal barrier coatings (TBCs) with Y2O3-stabilized ZrO2 (YSZ) top coat play a very important role in advanced turbine blades by considerably increasing the engine efficiency and improving the performance of highly loaded blades. However, at high temperatures, environment factors result in the failure of TBCs. The influence of calcium-magnesium-alumino-silicate (CMAS) is one of environment factors. Although thermo-physical effect is being paid attention to, the thermo-chemical reaction becomes the hot-spot in the research area of TBCs affected by CMAS. In this paper, traditional twolayered structured TBCs were prepared by electron beam physical vapor deposition (EB- PVD) as the object of study. TBCs coated with CMAS were heated at 1240℃ for 3 h. Additionally, 15 wt.% simulated molten CMAS powder and YSZ powder were mixed and heated at 1240℃ or 1350℃ for 48 h. SEM and EDS were adopted to detect morphology and elements distribution. According to XRD and TEM results, it was revealed that CMAS react with YSZ at high temperature and form ZrSiO4, Ca0.2Zr0.8O1.8 and Ca0.15Zr0.85O1.85 after reaction, as a result, leading to the failure of TBCs and decreasing the TBC lifetime.