The reduction of yttrium ion on copper electrode in NaCl-KCl-YCl3 molten salts has been investigated.The results indicate that several humps for formation of intermetallic compounds occur before metallic yttrium is pr...The reduction of yttrium ion on copper electrode in NaCl-KCl-YCl3 molten salts has been investigated.The results indicate that several humps for formation of intermetallic compounds occur before metallic yttrium is produced. The formation of intermetallic compounds is controlled by diffusion of yttrium into copper electrode. The application of theoretical results to diffusion of yttrium atoms into copper substrate is discussed also.展开更多
The effects of yttrium on the behavior of the lithium-aluminium alloy were studied by cyclic voltammetryand potential step. The electrochemical properties of lithium-aluminium anode were improved by adding yttri-um e...The effects of yttrium on the behavior of the lithium-aluminium alloy were studied by cyclic voltammetryand potential step. The electrochemical properties of lithium-aluminium anode were improved by adding yttri-um element into aluminium before lithium was deposited. Some parameters for preparing lithium-aluminiumelectrodes were also given.展开更多
In this study, the electrochemical reduction of Y(Ⅲ)on nickel electrode has been investigated. The resultsshow that there are several plateaus for formation of intermetallic compounds preceding reduction peak ofyttri...In this study, the electrochemical reduction of Y(Ⅲ)on nickel electrode has been investigated. The resultsshow that there are several plateaus for formation of intermetallic compounds preceding reduction peak ofyttrium. A linear relationship between the current and t ̄(-1/2) has been obtained, showing that Cottrell's law isobeyed.展开更多
Fabrication of stable,reproducible and reusable reference electrodes for low energy and high-temperature steam splitting is of great interest for hydrogen fuel production without anthropogenic carbon dioxide(CO2)emiss...Fabrication of stable,reproducible and reusable reference electrodes for low energy and high-temperature steam splitting is of great interest for hydrogen fuel production without anthropogenic carbon dioxide(CO2)emission.This study has been conducted for the detection of suitable material for the fabrication of novel reference electrode.In the present scenario,this research is designed to fabricate a novel nickel reference electrode by using operating conditions of eutectic molten hydroxide(NaOH-KOH,49-51 mol%)at temperature 300℃in an ion-conducting membrane of alumina and mullite tube.Afterwards,the designed nickel reference electrode has been examined for its reusability and stability by using electrochemical technique and cyclic voltammetry.Five scans of cyclic voltammetry are performed for both membrane fabricated reference electrode.A slight positive shift in oxidation peaks is observed for mullite membrane electrode(64 mV from scan 1 to 5).The stability measurements are noted by changing the scan rate between 50 and 150 mV s−1.Furthermore,the results show that the Ni/Ni(OH)2 reference electrode covered with a mullite membrane is stable and reusable at 300℃temperature without any deterioration.The stability and reusability of prepared nickel reference electrode covered by mullite tube in the eutectic molten hydroxide were up to 9 days to carry out an electrochemical investigation,while for alumina tube reference electrode the stability and reliability were up to 3 days.The internal electrolytic material and ionic conductance can play an important role for future studies with this reference electrode along with optimisation of temperature and scan rate parameters.展开更多
The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic...The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.展开更多
The electrochemical behavior of lithium incorporated in aluminum electrode in LiTFSI/KTf (lithium bis (trifluoromethylsulfonyl) amide/CF3SO3K) molten salt electrolyte was studied by a variety of electrochemical te...The electrochemical behavior of lithium incorporated in aluminum electrode in LiTFSI/KTf (lithium bis (trifluoromethylsulfonyl) amide/CF3SO3K) molten salt electrolyte was studied by a variety of electrochemical techniques including cyclic voltammetry, chronopotentiometry and chronoamperometry. The reduction reaction is found involving a nucleation process on the aluminum electrode. The results of chronopotentiometry indicate that the process of lithium incorporation in aluminum is smooth and uniform. The galvanostatic cycle experiments show that the coulombic efficiency is very low in the first cycle, which is mainly due to the "retention capacity" of Li-Al alloys. This characteristic is testified by the results of XRD and SEM. The results of chronoamperometry indicate that the incorporation of lithium into aluminum for the formation of a-phase Li-Al alloy is limited by its diffusion rate, with a measured diffusion coefficient of 1.8× 10^-10 cm2/s.展开更多
The electrode kinetics of cerium on aluminium electrode and its effects on the behavior of the lithium-aluminium anode were studied by using cyclic voltammetry and chronoamperometry. The electrochemical properties and...The electrode kinetics of cerium on aluminium electrode and its effects on the behavior of the lithium-aluminium anode were studied by using cyclic voltammetry and chronoamperometry. The electrochemical properties and physical behavior of lithium-aluminium anode were improved by adding cerium into aluminium before lithium was deposited. Some parameters for preparing lithium-aluminium electrodes were also given.展开更多
文摘The reduction of yttrium ion on copper electrode in NaCl-KCl-YCl3 molten salts has been investigated.The results indicate that several humps for formation of intermetallic compounds occur before metallic yttrium is produced. The formation of intermetallic compounds is controlled by diffusion of yttrium into copper electrode. The application of theoretical results to diffusion of yttrium atoms into copper substrate is discussed also.
文摘The effects of yttrium on the behavior of the lithium-aluminium alloy were studied by cyclic voltammetryand potential step. The electrochemical properties of lithium-aluminium anode were improved by adding yttri-um element into aluminium before lithium was deposited. Some parameters for preparing lithium-aluminiumelectrodes were also given.
文摘In this study, the electrochemical reduction of Y(Ⅲ)on nickel electrode has been investigated. The resultsshow that there are several plateaus for formation of intermetallic compounds preceding reduction peak ofyttrium. A linear relationship between the current and t ̄(-1/2) has been obtained, showing that Cottrell's law isobeyed.
文摘Fabrication of stable,reproducible and reusable reference electrodes for low energy and high-temperature steam splitting is of great interest for hydrogen fuel production without anthropogenic carbon dioxide(CO2)emission.This study has been conducted for the detection of suitable material for the fabrication of novel reference electrode.In the present scenario,this research is designed to fabricate a novel nickel reference electrode by using operating conditions of eutectic molten hydroxide(NaOH-KOH,49-51 mol%)at temperature 300℃in an ion-conducting membrane of alumina and mullite tube.Afterwards,the designed nickel reference electrode has been examined for its reusability and stability by using electrochemical technique and cyclic voltammetry.Five scans of cyclic voltammetry are performed for both membrane fabricated reference electrode.A slight positive shift in oxidation peaks is observed for mullite membrane electrode(64 mV from scan 1 to 5).The stability measurements are noted by changing the scan rate between 50 and 150 mV s−1.Furthermore,the results show that the Ni/Ni(OH)2 reference electrode covered with a mullite membrane is stable and reusable at 300℃temperature without any deterioration.The stability and reusability of prepared nickel reference electrode covered by mullite tube in the eutectic molten hydroxide were up to 9 days to carry out an electrochemical investigation,while for alumina tube reference electrode the stability and reliability were up to 3 days.The internal electrolytic material and ionic conductance can play an important role for future studies with this reference electrode along with optimisation of temperature and scan rate parameters.
基金financial assistance from Tehran University of Medical Sciences,Tehran,Iran
文摘The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.
基金Project (70510011) supported by Scientific Research Starting Foundation of Jiaxing University,ChinaProject (84209001B3) supported by Open Fund of Key Laboratory of Clean Chemical Process of Jiaxing,China
文摘The electrochemical behavior of lithium incorporated in aluminum electrode in LiTFSI/KTf (lithium bis (trifluoromethylsulfonyl) amide/CF3SO3K) molten salt electrolyte was studied by a variety of electrochemical techniques including cyclic voltammetry, chronopotentiometry and chronoamperometry. The reduction reaction is found involving a nucleation process on the aluminum electrode. The results of chronopotentiometry indicate that the process of lithium incorporation in aluminum is smooth and uniform. The galvanostatic cycle experiments show that the coulombic efficiency is very low in the first cycle, which is mainly due to the "retention capacity" of Li-Al alloys. This characteristic is testified by the results of XRD and SEM. The results of chronoamperometry indicate that the incorporation of lithium into aluminum for the formation of a-phase Li-Al alloy is limited by its diffusion rate, with a measured diffusion coefficient of 1.8× 10^-10 cm2/s.
文摘The electrode kinetics of cerium on aluminium electrode and its effects on the behavior of the lithium-aluminium anode were studied by using cyclic voltammetry and chronoamperometry. The electrochemical properties and physical behavior of lithium-aluminium anode were improved by adding cerium into aluminium before lithium was deposited. Some parameters for preparing lithium-aluminium electrodes were also given.
基金financially supported by NSAF(No.U1530155)Ministry of Science and Technology(MOST)of China,US–China Collaboration on Cutting-edge Technology Development of Electric Vehicle,the Nation Key Basic Research Program of China(No.2015CB251100)Beijing Key Laboratory of Environmental Science and Engineering(No.20131039031)