To investigate the imploding characteristics of cylindrical wire array, experiments with load current varying from 1.5MA to 1.7MA were carried out on the Qiangguang-1 facility. The complicated temporal-spatial distrib...To investigate the imploding characteristics of cylindrical wire array, experiments with load current varying from 1.5MA to 1.7MA were carried out on the Qiangguang-1 facility. The complicated temporal-spatial distribution of x-ray radiation was measured by the one-dimensional (1D) x-ray imaging system. Other diagnostic equipments including the x-ray power meter (XRPM) and the time-integrated pinhole camera were used to record time-resolved x-ray power pulse and pinhole x-ray images. Analysis shows that the fast leading edge of the local x-ray radiation pulse is of primary importance in sharpening x-ray power pulse rather than the temporal synchrony and the spatial uniformity of implosion. Experimental results indicated that the better axial imploding synchrony, the faster the increase of x-ray power for an array consisting of 32 tungsten wires of 5 μm diameter than for the others, and the higher the x-ray radiation power with maximal convergence ratio (r0/r1) of 10.5. A ‘zipper-like' effect of x-ray radiation extending from the anode to the cathode was also observed.展开更多
In order to couple the numerical simulation of a primary test stand driver with an optimal load design, a zero- dimensional wire array load model is designed based on the Saturn load model using PSPICE, which is an up...In order to couple the numerical simulation of a primary test stand driver with an optimal load design, a zero- dimensional wire array load model is designed based on the Saturn load model using PSPICE, which is an upgraded version of the Simulation Program with Integrated Circuit Emphasis (SPICE) designed by the ORCAD Corporation to perform circuit simulations. This paper calculates different load parameters and discusses factors influencing the driving current curve. With appropriate driving current curves chosen, further magneto-hydrodynamic calculations are carried out and discussed to provide the best results for experiments. The suggested optimal load parameters play an important role in experimental load design.展开更多
Two dynamics modes, named short ablation mode and long ablation mode, are observed in implosion experiments of planar wire array Z pinch on 'QiangGuang-I' facility utilizing an optical streak camera. The long ablati...Two dynamics modes, named short ablation mode and long ablation mode, are observed in implosion experiments of planar wire array Z pinch on 'QiangGuang-I' facility utilizing an optical streak camera. The long ablation mode has a lagged trajectory compared with the short ablation mode. For shot 10035 in a short ablation mode, the initial time of K-shell radiation is consistent with the interaction time for ablation plasma arriving at the centre of wire array, while for shot 10038 in long ablation mode, the initial time of K-shell radiation is about 10 ns earlier. In the two modes, the partial ablation plasma could traverse the wire array plane and then collide in the centre to form a dense plasma column with a diameter of 2.2 mm for shot 10035 and 1.5 mm for shot 10038.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10035030).Acknowledgments Thanks to the crew of Qiangguang-1 facility for help in experiments and thanks to Ding Ning for many constructive suggestions.
文摘To investigate the imploding characteristics of cylindrical wire array, experiments with load current varying from 1.5MA to 1.7MA were carried out on the Qiangguang-1 facility. The complicated temporal-spatial distribution of x-ray radiation was measured by the one-dimensional (1D) x-ray imaging system. Other diagnostic equipments including the x-ray power meter (XRPM) and the time-integrated pinhole camera were used to record time-resolved x-ray power pulse and pinhole x-ray images. Analysis shows that the fast leading edge of the local x-ray radiation pulse is of primary importance in sharpening x-ray power pulse rather than the temporal synchrony and the spatial uniformity of implosion. Experimental results indicated that the better axial imploding synchrony, the faster the increase of x-ray power for an array consisting of 32 tungsten wires of 5 μm diameter than for the others, and the higher the x-ray radiation power with maximal convergence ratio (r0/r1) of 10.5. A ‘zipper-like' effect of x-ray radiation extending from the anode to the cathode was also observed.
文摘In order to couple the numerical simulation of a primary test stand driver with an optimal load design, a zero- dimensional wire array load model is designed based on the Saturn load model using PSPICE, which is an upgraded version of the Simulation Program with Integrated Circuit Emphasis (SPICE) designed by the ORCAD Corporation to perform circuit simulations. This paper calculates different load parameters and discusses factors influencing the driving current curve. With appropriate driving current curves chosen, further magneto-hydrodynamic calculations are carried out and discussed to provide the best results for experiments. The suggested optimal load parameters play an important role in experimental load design.
文摘Two dynamics modes, named short ablation mode and long ablation mode, are observed in implosion experiments of planar wire array Z pinch on 'QiangGuang-I' facility utilizing an optical streak camera. The long ablation mode has a lagged trajectory compared with the short ablation mode. For shot 10035 in a short ablation mode, the initial time of K-shell radiation is consistent with the interaction time for ablation plasma arriving at the centre of wire array, while for shot 10038 in long ablation mode, the initial time of K-shell radiation is about 10 ns earlier. In the two modes, the partial ablation plasma could traverse the wire array plane and then collide in the centre to form a dense plasma column with a diameter of 2.2 mm for shot 10035 and 1.5 mm for shot 10038.