A design method of reinforced concrete (R. C.) offshore platforms with nonlinear finite element analysis is proposed. According to the method, a computer program is developed. In this program nonlinear constitutive re...A design method of reinforced concrete (R. C.) offshore platforms with nonlinear finite element analysis is proposed. According to the method, a computer program is developed. In this program nonlinear constitutive relationships and strength criteria of concrete and steel bars are included, and the progressive cracking and crushing of the concrete are taken into account. Based on the stress distribution obtained by the nonlinear finite element analysis, the amount of reinforcement in the control sections can be computed and adjusted automatically by the program to satisfy the requirement of the design. The amount of reinforcement required in the control sections, which are obtained with the nonlinear finite element analysis, is agreeable to that obtained in the experiment. This shows that the design method of R. C. offshore platform with the nonlinear finite element method proposed by the authors is reliable for practical use.展开更多
The interactions between reinforced concrete(RC)frames and infill walls play an important role in the seismic response of frames,particularly for low-rise frames.Infill walls can increase the overall lateral strength ...The interactions between reinforced concrete(RC)frames and infill walls play an important role in the seismic response of frames,particularly for low-rise frames.Infill walls can increase the overall lateral strength and stiffness of the frame owing to their high strength and stiffness.However,local wall-frame interactions can also lead to increased shear demand in the columns owing to the compressive diagonal strut force from the infill wall,which can result in failure or in serious situations,collapse.In this study,the effectiveness of a design strategy to consider the complex infill wall interaction was investigated.The approach was used to design example RC frames with infill walls in locations with different seismicity levels in Thailand.The performance of these frames was assessed using nonlinear static,and dynamic analyses.The performance of the frames and the failure modes were compared with those of frames designed without considering the infill wall or the local interactions.It was found that even though the overall responses of the buildings designed with and without consideration of the local interaction of the infill walls were similar in terms the overall lateral strength,the failure modes were different.The proposed method can eliminate the column shear failure from the building.Finally,the merits and limitations of this approach are discussed and summarized.展开更多
It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of...It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of building structures against multi-hazard is becoming more and more obvious.Therefore,the damage analysis of building structures under the combined action of multiple hazards has become a very urgent requirement for disaster prevention and reduction.In this paper,the refined finite element model of reinforced concrete(RC)columns is established by using the explicit dynamic analysis software LS-DYNA.Combined with the Monte Carlo method,the damage law of RC columns under the combined action of random single earthquake or explosion disaster and multi-hazard is studied,and the damage groups are distinguished according to the damage index.Based on the support vector machine(SVM)algorithm,the dividing line between different damage degree groups is determined,and a rapid method for determining the damage degree of RC columns under the combined seismic and blast loads is proposed.Finally,suggestions for the design of RC column against multi-disaster are put forward.展开更多
Four types of seismic design details were tested using 11 transfer column specimens and one comparison specimen of RC under low cyclic reversed loading. Test results show that diagonal cracks control the failure patte...Four types of seismic design details were tested using 11 transfer column specimens and one comparison specimen of RC under low cyclic reversed loading. Test results show that diagonal cracks control the failure pattern and damage occurs mainly in the RC section with weak shear capacity in the transfer columns. There is a large difference in the bearing capacity and ductility of the transfer columns according to the test results, which indicates that the strengthening effect of diverse structural measures is quite different. The section ratio of I-section-encased steel and the axial compression ratio also have a great influence on the bearing capacity and ductility. Although the bearing capacity of transfer columns with additional longitudinal bars and additional X bars is relatively large, they have poor deformation capacity. Setting more stirrups along the columns is the best structural measure to enhance the seismic performance. The studs on the I-sectionencased steel by welding can help to complete the stress transfer between the steel and concrete, and avoid performance degradation of the two materials due to bonding failure.展开更多
文摘A design method of reinforced concrete (R. C.) offshore platforms with nonlinear finite element analysis is proposed. According to the method, a computer program is developed. In this program nonlinear constitutive relationships and strength criteria of concrete and steel bars are included, and the progressive cracking and crushing of the concrete are taken into account. Based on the stress distribution obtained by the nonlinear finite element analysis, the amount of reinforcement in the control sections can be computed and adjusted automatically by the program to satisfy the requirement of the design. The amount of reinforcement required in the control sections, which are obtained with the nonlinear finite element analysis, is agreeable to that obtained in the experiment. This shows that the design method of R. C. offshore platform with the nonlinear finite element method proposed by the authors is reliable for practical use.
基金The authors gratefully acknowledge the financial support from the Thailand Research and Innovation under Fundamental Fund 2022(Advanced Construction Toward Thailand 4.0 Project)to the Construction Innovations and Future Infrastructures Research Center at King Mongkut’s University of Technology ThonburiSupplementary funding was provided by TRF Senior Research Scholar under Grant RTA 6280012.
文摘The interactions between reinforced concrete(RC)frames and infill walls play an important role in the seismic response of frames,particularly for low-rise frames.Infill walls can increase the overall lateral strength and stiffness of the frame owing to their high strength and stiffness.However,local wall-frame interactions can also lead to increased shear demand in the columns owing to the compressive diagonal strut force from the infill wall,which can result in failure or in serious situations,collapse.In this study,the effectiveness of a design strategy to consider the complex infill wall interaction was investigated.The approach was used to design example RC frames with infill walls in locations with different seismicity levels in Thailand.The performance of these frames was assessed using nonlinear static,and dynamic analyses.The performance of the frames and the failure modes were compared with those of frames designed without considering the infill wall or the local interactions.It was found that even though the overall responses of the buildings designed with and without consideration of the local interaction of the infill walls were similar in terms the overall lateral strength,the failure modes were different.The proposed method can eliminate the column shear failure from the building.Finally,the merits and limitations of this approach are discussed and summarized.
基金supported by the National Natural Science Foundation of China (Grant Nos.51878445,51938011 and 51908405)。
文摘It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of building structures against multi-hazard is becoming more and more obvious.Therefore,the damage analysis of building structures under the combined action of multiple hazards has become a very urgent requirement for disaster prevention and reduction.In this paper,the refined finite element model of reinforced concrete(RC)columns is established by using the explicit dynamic analysis software LS-DYNA.Combined with the Monte Carlo method,the damage law of RC columns under the combined action of random single earthquake or explosion disaster and multi-hazard is studied,and the damage groups are distinguished according to the damage index.Based on the support vector machine(SVM)algorithm,the dividing line between different damage degree groups is determined,and a rapid method for determining the damage degree of RC columns under the combined seismic and blast loads is proposed.Finally,suggestions for the design of RC column against multi-disaster are put forward.
基金Supported by:National Natural Science Foundation of China under Grant No.51208175the Fundamental Research Funds for the Central Universities under Grant Nos.2015B17514 and 2016B20514
文摘Four types of seismic design details were tested using 11 transfer column specimens and one comparison specimen of RC under low cyclic reversed loading. Test results show that diagonal cracks control the failure pattern and damage occurs mainly in the RC section with weak shear capacity in the transfer columns. There is a large difference in the bearing capacity and ductility of the transfer columns according to the test results, which indicates that the strengthening effect of diverse structural measures is quite different. The section ratio of I-section-encased steel and the axial compression ratio also have a great influence on the bearing capacity and ductility. Although the bearing capacity of transfer columns with additional longitudinal bars and additional X bars is relatively large, they have poor deformation capacity. Setting more stirrups along the columns is the best structural measure to enhance the seismic performance. The studs on the I-sectionencased steel by welding can help to complete the stress transfer between the steel and concrete, and avoid performance degradation of the two materials due to bonding failure.