To address the challenge of achieving unified control across diverse nonlinear systems, a comprehensive control theory spanning from PID (Proportional-Integral-Derivative) to ACPID (Auto-Coupling PID) has been propose...To address the challenge of achieving unified control across diverse nonlinear systems, a comprehensive control theory spanning from PID (Proportional-Integral-Derivative) to ACPID (Auto-Coupling PID) has been proposed. The primary concept is to unify all intricate factors, including internal dynamics and external bounded disturbance, into a single total disturbance. This enables the mapping of various nonlinear systems onto a linear disturbance system. Based on the theory of PID control and the characteristic equation of a critically damping system, Zeng’s stabilization rules (ZSR) and an ACPID control force based on a single speed factor have been designed. ACPID control theory is both simple and practical, with significant scientific significance and application value in the field of control engineering.展开更多
文摘To address the challenge of achieving unified control across diverse nonlinear systems, a comprehensive control theory spanning from PID (Proportional-Integral-Derivative) to ACPID (Auto-Coupling PID) has been proposed. The primary concept is to unify all intricate factors, including internal dynamics and external bounded disturbance, into a single total disturbance. This enables the mapping of various nonlinear systems onto a linear disturbance system. Based on the theory of PID control and the characteristic equation of a critically damping system, Zeng’s stabilization rules (ZSR) and an ACPID control force based on a single speed factor have been designed. ACPID control theory is both simple and practical, with significant scientific significance and application value in the field of control engineering.