The Pulang porphyry copper deposit is located in the Zhongdian island arc belt, NW Yunnan, in the central part of the Sanjiang area, SW China, belonging to the southern segment of the Yidun island arc belt on the west...The Pulang porphyry copper deposit is located in the Zhongdian island arc belt, NW Yunnan, in the central part of the Sanjiang area, SW China, belonging to the southern segment of the Yidun island arc belt on the western margin of the Yangtze Platform. In the Yidun island arc, there occur well-known 'Gacun-style' massive sulfide deposits in the northern segment and plenty of porphyry copper deposits in the southern segment, of which the Pulang porphyry copper deposit is one of the representatives. Like the Yulong porphyry copper deposit, this porphyry copper deposit is also one of the most important porphyry copper deposits in the eastern Qinghai-Tibet Plateau. But it is different from other porphyry copper deposits in the eastern Qinghai-Tibet Plateau (e.g. those in the Gangdise porphyry copper belt and Yulong porphyry copper belt) in that it formed in the Indosinian period, while others in the Himalayan period. Because of its particularity among the porphyry copper deposits of China, this porphyry copper deposit is of great significance for the study of the basic geology and the evaluation and prediction of mineral resources in the Zhongdian island arc belt. However, no accurate chronological data are available for determining the timing of mineralization of the porphyry copper deposit. By field observation in the study area and Re-Os dating of molybdenite and K-Ar dating of hydrothermal minerals and whole rock from the typical geological bodies, the timing of mineralization of the porphyry copper deposit has systematically been determined for the first time. The K-Ar age for the hydrothermal mineralization of biotite-quartz monzonitic porphyry that has undergone patassic silicate (biotite and K-feldspar) alteration ranges from 235.4±2.4 to 221.5±2.0 Ma and the Re-Os age for molybdenite in the quartz-molybdenite stage is ~213±3.8 Ma. These data are very close to each other, suggesting that the ore-forming processes of the Pulang porphyry copper deposit was completed in the Indosinian. But the K-feldspar K-Ar age of the main orebodies suggests that the hydrothermal activity related to porphyry copper mineralization continued till ~182.5±1.8 Ma. This indicates that the lifespan of the hydrothermal system related to porphyry copper mineralization may have lasted at least 40 Ma. This hydrothermal thermal system with such a long lifespan may be one of the necessary conditions for forming large porphyry copper deposits with a high grade. No late Yanshanian and/or Himalayan magmatism (mineralization) were superimposed in the Pulang porphyry copper deposit.展开更多
The Zhongdian—Daju fault is the transitional fault connecting the Kalakorum\|Jiali right lateral strike slip faulting zone and the Red River Fault, and a part of the south boundary of the eastward extrusive Tibet pla...The Zhongdian—Daju fault is the transitional fault connecting the Kalakorum\|Jiali right lateral strike slip faulting zone and the Red River Fault, and a part of the south boundary of the eastward extrusive Tibet plateau. Field observations, associated with the analyses of the satellite images and air photographs, show that the Zhongdian—Daju fault, a 250km long fault in northwest Yunnan, is a nascent right lateral strike slip fault zone with the slip rate of 2~8mm/a. The Zhongdian—Daju fault is not a simple right lateral strike slip fault. There are several subparallel, slightly en échelon fault strands from Deqing to Yongsheng with the total length of 200km and perhaps 250km. Like the typical strike\|slip faults in this area, the morphological features of the fault, which can be seen clearly in the satellite images, are characterized as straight volleys and displaced gullies and ridges. In addition, Several Quaternary basins distribute along Zhongdian—Daju fault. The are controlled by the right lateral strike slipping of the fault in late Quaternary.展开更多
Zhongdian,a smnall town in the Tibetan-irhabited area of Yumnan Province,is affec-tiorately referred to as the Town of Wooden Bowls.Local work-shope belonging to 39 families are mainty concentrated in Shangqiaotou and...Zhongdian,a smnall town in the Tibetan-irhabited area of Yumnan Province,is affec-tiorately referred to as the Town of Wooden Bowls.Local work-shope belonging to 39 families are mainty concentrated in Shangqiaotou and Yindao villages in Nid.They make about 20,000 wooden bowls a yeat.The craftspensons are local farm.ec who create thare ware during the off peason for agriculrure.展开更多
The Pulang giant porphyry Cu-Mo polymetallic deposit is located in the Zhongdian area in the center of the Sanjiang Tethys tectonic domain,which was formed by the westward subduction of the Garze-Litang oceanic slab b...The Pulang giant porphyry Cu-Mo polymetallic deposit is located in the Zhongdian area in the center of the Sanjiang Tethys tectonic domain,which was formed by the westward subduction of the Garze-Litang oceanic slab beneath the Zhongza massif.Chalcopyrite-pyrrhotite-pyritemolybdenite occurs as disseminations,veins,veinlets,and stockworks distributed in the K-silicate alteration zone in the monzonite porphyry,which is superimposed by propylitization.The chemical compositions of biotite and amphibole analyzed by electron probe microanalysis(EPMA)indicate that the ore-forming magma and exsolved fluids experienced a continuous decrease in the oxygen fugacity(fO_(2)).Primary amphibolite and biotite(type I)crystallized at relatively high temperatures(744-827°C)and low fO_(2)(log fO_(2)=−12.26 to−11.91)during the magmatic stage.Hydrothermal fluids exsolved from the magma have a relatively lower temperature(621-711°C)and fO_(2)(log fO_(2)=−14.36 to−13.32)than the original magma.In addition,the presence of a high abundance of pyrrhotite and an insufficiency of primary magnetite and sulfate in the ore(i.e.,anhydrite and gypsum)indicate that the deposit may be a reduced porphyry deposit.Magma and fluid fO_(2)results,combined with previous research on magmatic fO_(2)at the Pulang deposit,indicate that the magma associated with the reduced Pulang ore assemblages was initially generated as a highly oxidized magma that was subsequently reduced by sedimentary rocks of the Tumugou Formation.展开更多
基金the Projects of Land and Mineral Resources Survey of the Ministry of Land and Resources(No.200310200001-4)National Natural Science Foundation of China(No.40272046)National Basic Research Project of the Ministry of Scienceand Technology of China(No.2002CB412610).
文摘The Pulang porphyry copper deposit is located in the Zhongdian island arc belt, NW Yunnan, in the central part of the Sanjiang area, SW China, belonging to the southern segment of the Yidun island arc belt on the western margin of the Yangtze Platform. In the Yidun island arc, there occur well-known 'Gacun-style' massive sulfide deposits in the northern segment and plenty of porphyry copper deposits in the southern segment, of which the Pulang porphyry copper deposit is one of the representatives. Like the Yulong porphyry copper deposit, this porphyry copper deposit is also one of the most important porphyry copper deposits in the eastern Qinghai-Tibet Plateau. But it is different from other porphyry copper deposits in the eastern Qinghai-Tibet Plateau (e.g. those in the Gangdise porphyry copper belt and Yulong porphyry copper belt) in that it formed in the Indosinian period, while others in the Himalayan period. Because of its particularity among the porphyry copper deposits of China, this porphyry copper deposit is of great significance for the study of the basic geology and the evaluation and prediction of mineral resources in the Zhongdian island arc belt. However, no accurate chronological data are available for determining the timing of mineralization of the porphyry copper deposit. By field observation in the study area and Re-Os dating of molybdenite and K-Ar dating of hydrothermal minerals and whole rock from the typical geological bodies, the timing of mineralization of the porphyry copper deposit has systematically been determined for the first time. The K-Ar age for the hydrothermal mineralization of biotite-quartz monzonitic porphyry that has undergone patassic silicate (biotite and K-feldspar) alteration ranges from 235.4±2.4 to 221.5±2.0 Ma and the Re-Os age for molybdenite in the quartz-molybdenite stage is ~213±3.8 Ma. These data are very close to each other, suggesting that the ore-forming processes of the Pulang porphyry copper deposit was completed in the Indosinian. But the K-feldspar K-Ar age of the main orebodies suggests that the hydrothermal activity related to porphyry copper mineralization continued till ~182.5±1.8 Ma. This indicates that the lifespan of the hydrothermal system related to porphyry copper mineralization may have lasted at least 40 Ma. This hydrothermal thermal system with such a long lifespan may be one of the necessary conditions for forming large porphyry copper deposits with a high grade. No late Yanshanian and/or Himalayan magmatism (mineralization) were superimposed in the Pulang porphyry copper deposit.
文摘The Zhongdian—Daju fault is the transitional fault connecting the Kalakorum\|Jiali right lateral strike slip faulting zone and the Red River Fault, and a part of the south boundary of the eastward extrusive Tibet plateau. Field observations, associated with the analyses of the satellite images and air photographs, show that the Zhongdian—Daju fault, a 250km long fault in northwest Yunnan, is a nascent right lateral strike slip fault zone with the slip rate of 2~8mm/a. The Zhongdian—Daju fault is not a simple right lateral strike slip fault. There are several subparallel, slightly en échelon fault strands from Deqing to Yongsheng with the total length of 200km and perhaps 250km. Like the typical strike\|slip faults in this area, the morphological features of the fault, which can be seen clearly in the satellite images, are characterized as straight volleys and displaced gullies and ridges. In addition, Several Quaternary basins distribute along Zhongdian—Daju fault. The are controlled by the right lateral strike slipping of the fault in late Quaternary.
文摘Zhongdian,a smnall town in the Tibetan-irhabited area of Yumnan Province,is affec-tiorately referred to as the Town of Wooden Bowls.Local work-shope belonging to 39 families are mainty concentrated in Shangqiaotou and Yindao villages in Nid.They make about 20,000 wooden bowls a yeat.The craftspensons are local farm.ec who create thare ware during the off peason for agriculrure.
基金supported by the National Natural Science Foundation of China(NSFC)project(42163005).
文摘The Pulang giant porphyry Cu-Mo polymetallic deposit is located in the Zhongdian area in the center of the Sanjiang Tethys tectonic domain,which was formed by the westward subduction of the Garze-Litang oceanic slab beneath the Zhongza massif.Chalcopyrite-pyrrhotite-pyritemolybdenite occurs as disseminations,veins,veinlets,and stockworks distributed in the K-silicate alteration zone in the monzonite porphyry,which is superimposed by propylitization.The chemical compositions of biotite and amphibole analyzed by electron probe microanalysis(EPMA)indicate that the ore-forming magma and exsolved fluids experienced a continuous decrease in the oxygen fugacity(fO_(2)).Primary amphibolite and biotite(type I)crystallized at relatively high temperatures(744-827°C)and low fO_(2)(log fO_(2)=−12.26 to−11.91)during the magmatic stage.Hydrothermal fluids exsolved from the magma have a relatively lower temperature(621-711°C)and fO_(2)(log fO_(2)=−14.36 to−13.32)than the original magma.In addition,the presence of a high abundance of pyrrhotite and an insufficiency of primary magnetite and sulfate in the ore(i.e.,anhydrite and gypsum)indicate that the deposit may be a reduced porphyry deposit.Magma and fluid fO_(2)results,combined with previous research on magmatic fO_(2)at the Pulang deposit,indicate that the magma associated with the reduced Pulang ore assemblages was initially generated as a highly oxidized magma that was subsequently reduced by sedimentary rocks of the Tumugou Formation.