A new exact solution for nonlinear interaction of two pulsatory waves of the Korteweg-de Vries (KdV) equation is computed by decomposition in an invariant zigzag hyperbolic tangent (ZHT) structure. A computational alg...A new exact solution for nonlinear interaction of two pulsatory waves of the Korteweg-de Vries (KdV) equation is computed by decomposition in an invariant zigzag hyperbolic tangent (ZHT) structure. A computational algorithm is developed by experimental programming with lists of equations and expressions. The structural solution is proved by theoretical programming with symbolic general terms. Convergence, tolerance, and summation of the ZHT structural approximation are discussed. When a reference level vanishes, the two-wave solution is reduced to the two-soliton solution of the KdV equation.展开更多
文摘A new exact solution for nonlinear interaction of two pulsatory waves of the Korteweg-de Vries (KdV) equation is computed by decomposition in an invariant zigzag hyperbolic tangent (ZHT) structure. A computational algorithm is developed by experimental programming with lists of equations and expressions. The structural solution is proved by theoretical programming with symbolic general terms. Convergence, tolerance, and summation of the ZHT structural approximation are discussed. When a reference level vanishes, the two-wave solution is reduced to the two-soliton solution of the KdV equation.