Steady state rheological behavior of semi-solid ZK60-RE magnesium alloy during compression was studied. The alloy was prepared from ZK60 alloy and RE elements by casting, equal channel angular extruding, and liquidus ...Steady state rheological behavior of semi-solid ZK60-RE magnesium alloy during compression was studied. The alloy was prepared from ZK60 alloy and RE elements by casting, equal channel angular extruding, and liquidus forging. Semi-solid isothermal pre-treatment was carried out to make the grains spherical before compression. The apparent viscosity increases with decreasing the solid content and shear rate. Another very important factor is the grain size. When the solid content is high, the viscosity increases with decreasing the grain size at high strain rates and decreases with decreasing the grain size at low shear rates. Several fitting equations were obtained by using the power law equation, and the method of time-temperature superposition was used to get more information through a small number of experimental data.展开更多
Microscopical techniques were used to provide the semi-solid microstructure evolutions of ZK60+RE alloys formed by compression and equal channel angular extrusion(ECAE), respectively. It is found that after compressio...Microscopical techniques were used to provide the semi-solid microstructure evolutions of ZK60+RE alloys formed by compression and equal channel angular extrusion(ECAE), respectively. It is found that after compression and ECAE, as-cast microstructures exhibit an obvious directional characteristic. The predeformation exerts a significant influence on the formation of thixotropic microstructures during partial remelting. Coalescence and Ostwald ripening are operative in the semi-solid mixture for both compression and ECAE formed alloys. Furthermore, the degree of spheroidization of ECAE formed alloy is better than that of compression formed alloy in appearance.展开更多
基金Projects(50475029 50605015) supported by the National Natural Science Foundation of China
文摘Steady state rheological behavior of semi-solid ZK60-RE magnesium alloy during compression was studied. The alloy was prepared from ZK60 alloy and RE elements by casting, equal channel angular extruding, and liquidus forging. Semi-solid isothermal pre-treatment was carried out to make the grains spherical before compression. The apparent viscosity increases with decreasing the solid content and shear rate. Another very important factor is the grain size. When the solid content is high, the viscosity increases with decreasing the grain size at high strain rates and decreases with decreasing the grain size at low shear rates. Several fitting equations were obtained by using the power law equation, and the method of time-temperature superposition was used to get more information through a small number of experimental data.
文摘Microscopical techniques were used to provide the semi-solid microstructure evolutions of ZK60+RE alloys formed by compression and equal channel angular extrusion(ECAE), respectively. It is found that after compression and ECAE, as-cast microstructures exhibit an obvious directional characteristic. The predeformation exerts a significant influence on the formation of thixotropic microstructures during partial remelting. Coalescence and Ostwald ripening are operative in the semi-solid mixture for both compression and ECAE formed alloys. Furthermore, the degree of spheroidization of ECAE formed alloy is better than that of compression formed alloy in appearance.