期刊文献+
共找到1,033篇文章
< 1 2 52 >
每页显示 20 50 100
Effects of grain refining and modification on mechanical properties and microstructures of Al-7.5Si-4Cu cast alloy 被引量:2
1
作者 刘光磊 司乃潮 +1 位作者 孙少纯 吴勤方 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期946-953,共8页
Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners a... Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners and modifiers on the mechanical properties, microstructures, grain refining and modification, and intermetallic compounds of the alloy. The results show that the mechanical properties and the microstructures of Al-7.5Si-4Cu cast alloys are improved immensely by combining addition of 0.8%Al-5Ti-B, 0.1%RE and 0.1%Al-10Sr grain refiners and modifiers compared with the individual addition and cast conditions. For individual addition condition, addition of 0.8%Al-5Ti-B master alloy can obtain superior tensile strength, Brinell hardness and finer equiaxedα(Al) dendrites. The alloy with 0.1%RE master alloy shows the highest improvement in ductility because the rare earth can purify the molten metal and change the shape of intermetallic compounds. While the alloy with 0.1%Al-10Sr modifier shows only good improvement in yield strength, and the improvement of other performance is unsatisfactory. The Al-10Sr modifier has a significant metamorphism for the eutectic silicon, but will make the gas content in the aluminum alloy melt increase to form serious columnar grain structures. The effects of grain refining and modification on mean area and aspect ratio have the same conclusions obtained in the mechanical properties and the microstructures analyses. 展开更多
关键词 Al-7.5Si-4Cu cast alloy grain refinement modification treatment mechanical properties MICROSTRUCTURES
下载PDF
Study of rare earth element effect on microstructures and mechanical properties of an Al-Cu-Mg-Si cast alloy 被引量:5
2
作者 WAN Weiwei HAN Jianmin LI Weijing WANG Jinhua 《Rare Metals》 SCIE EI CAS CSCD 2006年第z2期129-132,共4页
The improvements of microstructures and properties of a high strength aluminum cast alloy were studied. The effects of rare earth elements on the microstructures and mechanical properties of the high strength cast all... The improvements of microstructures and properties of a high strength aluminum cast alloy were studied. The effects of rare earth elements on the microstructures and mechanical properties of the high strength cast alloy Al-Cu-Mg-Si were investigated. The result shows that the addition of rare earth elements can change the microstructures in refining the grain size of the alloy and making the needle-like and laminar eutectic Si to a granular Si. With the increase of the rare earth, the tensile strength and elongation of the alloy increase first and then fall down. The mechanical properties of the alloy will reach the highest value when the content of rare earth elements is about 0.7%. 展开更多
关键词 high strength aluminum cast alloy Al-Cu-Mg-Si rare earth elements MICROSTRUCTURE mechanical properties
下载PDF
Role of alloying and heat treatment on microstructure and mechanical properties of cast Al-Li alloys:A review
3
作者 Guo-hua Wu You-jie Guo +4 位作者 Fang-zhou Qi Shen Zhang Yi-xiao Wang Xin Tong Liang Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期445-460,共16页
Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and ... Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and are ideal structural materials for aerospace,defense and military industries.On the basis of the microstructural characteristics of cast Al-Li alloys,exploring the role of alloying and micro-alloying can stabilize their dominant position and further expand their application scope.In this review,the development progress of cast Al-Li alloys was summarized comprehensively.According to the latest research highlights,the influence of alloying and heat treatment on the microstructure and mechanical properties was systematically analyzed.The potential methods to improve the alloy performance were concluded.In response to the practical engineering requirements of cast Al-Li alloys,the scientific challenges and future research directions were discussed and prospected. 展开更多
关键词 cast Al-Li alloy alloyING microstructure mechanical properties heat treatment
下载PDF
Microstructure and Mechanical Properties of Al-5Cu-4.5Mg-2.5Zn Squeeze Cast Alloy 被引量:2
4
作者 SUN Yonggen WANG Yanchun +4 位作者 SU Yanni SONG Xujie DU Lanjun CHENG Yuansheng DU Zhiming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第5期977-985,共9页
Al-5Cu-4.5Mg-2.5Zn alloy was prepared and the alloy ingots were fabricated by squeeze casting in this work.Considering these negative effects of composition segregation and coarse second phases,some heat treatments we... Al-5Cu-4.5Mg-2.5Zn alloy was prepared and the alloy ingots were fabricated by squeeze casting in this work.Considering these negative effects of composition segregation and coarse second phases,some heat treatments were adopted in this research.Microstructures,element distribution,phase constitutions and mechanical properties of Al-5Cu-4.5Mg-2.5Zn alloy ingots before and after heat treatments were investigated.It was discovered that these heat treatments would influence and extremely optimize the microstructures and properties of Al-5Cu-4.5Mg-2.5Zn alloy.Except some residual S (Al_(2)CuMg) phase and a few of η phase,the precipitate free zone (PFZ) and the Guinier Preston zone (GPZ) formed in the alloy.It was also found that θ′′ (Al_(2)Cu) and η′′ (MgZn_(2)) phases formed and kept a consistent relationship with the aluminum matrix.As the result,these properties of ultimate tensile strength (UTS),percentage of elongation and Brinell hardness (HB) were greatly elevated.The UTS,percent of elongation and HB were 469 MPa,8.1% and 208 N/mm^(2),respectively. 展开更多
关键词 Al-Cu-Mg-Zn alloy squeeze casting heat treatments second phases mechanical properties
下载PDF
Effect of Ti content on microstructures and mechanical properties of cast Al-2Li-2Cu-0.5Mg alloy 被引量:1
5
作者 You-jie Guo Dong-chen Yang +6 位作者 Liang Zhang Guo-hua Wu Yi-xiao Wang Pei-sen Li Guang-xiao Ren Liang-bin Li Xun-man Xiong 《China Foundry》 SCIE CAS CSCD 2023年第3期179-188,共10页
Ti is regarded as one of the promising grain refiners in cast Al-Li-Cu alloys,but few research works have been done on its independent role.In this study,the effect of Ti on the microstructure evolution and mechanical... Ti is regarded as one of the promising grain refiners in cast Al-Li-Cu alloys,but few research works have been done on its independent role.In this study,the effect of Ti on the microstructure evolution and mechanical properties of cast Al-2Li-2Cu-0.5Mg base alloy was investigated.The results revealed that the grains can be prominently refined with the increase of Ti addition.After adding Ti,high density TiB_(2)-Al_(3)Ti composite particles with a low lattice misfit form as heterogeneous nucleation sites for the α-Al matrix.δ’(Al3Li) and T_(1)(Al_(2)CuLi) precipitates that provide enhanced strength are dominated in the alloys after T6 aging treatment.The average size of both δ’ and half-width of δ’-precipitation free zone(PFZ) decreases gradually with the increase of Ti content.This is because the higher binding energy between Ti atoms and vacancies limits the diffusion efficiency of Li atoms,and thus results in a higher ductility.Additionally,no nano-sized Al_(3)Ti or core-shell structure of Al_(3)(Li,Ti) particles are found.The tensile property test results indicate that the Al-2Li-2Cu-0.5Mg alloy achieves optimal properties after aging at 175 °C for 32 h when 0.15wt.% Ti is added.It exhibits a yield strength of 352±5 MPa,an ultimate tensile strength of 423±6 MPa,and an elongation of(3±0.4)%.These findings are expected to offer a reliable theoretical guidance for the industrial composition design of the Al-Li-Cu series cast alloys. 展开更多
关键词 cast Al-Li-Cu alloy Ti content grain refiner mechanical property MICROSTRUCTURE
下载PDF
Microstructure and mechanical properties of Co-28Cr-6Mo-0.22C investment castings by current solution treatment
6
作者 Ze-yu Dan Jun Liu +4 位作者 Jian-lei Zhang Yan-hua Li Yuan-xin Deng Yun-hu Zhang Chang-jiang Song 《China Foundry》 SCIE EI CAS CSCD 2024年第4期369-378,共10页
This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment s... This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment significantly promotes the dissolution of carbides at a lower temperature.The optimal conditions for solution treatment are determined as a solution temperature of 1,125°C and a holding time of 5.0 min.Under these parameters,the size and volume fraction of precipitated phases in the investment castings are measured as6.2μm and 1.1vol.%.The yield strength,ultimate tensile strength,and total elongation of the Co-28Cr-6Mo-0.22C investment castings are 535 MPa,760 MPa,and 12.6%,respectively.These values exceed those obtained with the conventional solution treatment at 1,200°C for 4.0 h.The findings suggest a phase transformation of M_(23)C_(6)→σ+C following the current solution treatment at 1,125°C for 5.0 min.In comparison,the traditional solution treatment at 1,200°C for 4.0 h leads to the formation of M_(23)C_(6)and M_(6)C carbides.It is noteworthy that the non-thermal effect of the current during the solution treatment modifies the free energy of both the matrix and precipitation phase.This modification lowers the phase transition temperature of the M_(23)C_(6)→σ+C reaction,thereby facilitating the dissolution of carbides.As a result,the current solution treatment approach achieves carbide dissolution at a lower temperature and within a significantly shorter time when compared to the traditional solution treatment methods. 展开更多
关键词 CoCrMo alloy investment castings current solution treatment microstructure mechanical property CARBIDE
下载PDF
Microstructure and mechanical properties of Mg-Gd-Y-Zr alloy cast by metal mould and lost foam casting 被引量:15
7
作者 李吉林 陈荣石 柯伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期761-766,共6页
The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is r... The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is revealed that different forming modes do not influence the phase composition of as-cast alloy. In the as-cast specimens, the microstructures are similar and composed of α-Mg solid solution, eutectic compound of α-Mg+Mg 24 (Gd, Y) 5 and cuboid-shaped Mg 5 (Gd, Y) phase; whereas the average grain size of the alloy produced by metal mould casting is smaller than that by lost foam casting. The eutectic compound of the alloy is completely dissolved after solution treatment at 525 ℃for 6 h, while the Mg 5 (Gd, Y) phase still exists after solution treatment. After peak-ageing, the lost foam cast alloy exhibits the maximum ultimate tensile strength of 285 MPa, and metal mould cast specimen 325 MPa at room temperature, while the tensile yield strengths of them are comparable. It can be concluded that GW104 alloy cast by lost foam casting possesses similar microstructure and evidently lower mechanical strength compared with metal mould cast alloy, due to slow solidification rate and proneness to form shrinkage porosities during lost foam casting process. 展开更多
关键词 Mg-Gd-Y-Zr alloy lost foam casting metal mould casting MICROSTRUCTURE mechanical property
下载PDF
Effects of moulding sands and wall thickness on microstructure and mechanical properties of Sr-modified A356 aluminum casting alloy 被引量:10
8
作者 孙少纯 袁博 刘满平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1884-1890,共7页
The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands inc... The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands including quartz, alumina and chromite into multi-step blocks. The results show that the mechanical properties and microstructures using chromite sand are the best. As the cooling speed increases, the dendrite arm spacing (DAS) decreases significantly and the mechanical properties are improved, and the elongation is more sensitive to the cooling speed as compared with the tensile strength. The increase of the properties is primarily attributed to the decrease of the DAS and the increase of the free strontium atoms in the matrix. In particular, the regression models for predicting both the tensile strength and the elongation for Sr-modified A356 aluminum casting alloy were established based on the experimental data. 展开更多
关键词 A356 aluminum alloy sand casting cooling condition strontium modification MICROSTRUCTURE mechanical properties
下载PDF
Microstructure and room temperature mechanical properties of NiAl-Cr(Mo)-(Hf,Dy) hypoeutectic alloy prepared by injection casting 被引量:4
9
作者 盛立远 杨芳 +2 位作者 奚廷斐 郑玉峰 郭建亭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期983-990,共8页
The NiA1 Cr(Mo) (Hf, Dy) hypoeutectic alloys were prepared by conventional casting and injection casting techniques respectively, and their microstructure and room temperature mechanical properties were investigat... The NiA1 Cr(Mo) (Hf, Dy) hypoeutectic alloys were prepared by conventional casting and injection casting techniques respectively, and their microstructure and room temperature mechanical properties were investigated. The results reveal that with the addition of Hf and Dy, the Ni2AIHf Heusler phase and NisDy phase form along the NiAI/Cr(Mo) phase boundaries in intercellular region. By the injection casting method, some Ni2AIHf Heusler phase and NisDy phase transform into Hf and Dy solid solutions, respectively. Moreover, the microstructure of the alloy gets good optimization, which can be characterized by the fine interlamellar spacing, high proportion of eutectic cell area and homogeneously distributed fine Ni2AIHf, NisDy, Hf solid solution and Dy solid solutions. Compared with conventional-cast alloy, the room temperature mechanical properties of injection-cast alloy are improved obviously. 展开更多
关键词 NiAI based hypoeutectic alloy HF DY injection casting MICROSTRUCTURE mechanical properties
下载PDF
Microstructure evolution and tensile mechanical properties of thixoformed AZ61 magnesium alloy prepared by squeeze casting 被引量:3
10
作者 陈添 解志文 +4 位作者 罗荘竹 杨钦 谭生 王赟姣 罗一旻 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3421-3428,共8页
A novel process that combines squeeze casting with partial remelting to obtain AZ61 magnesium alloy with semi-solid microstructures was proposed. In this route, the squeeze casting was used to predeform the magnesium ... A novel process that combines squeeze casting with partial remelting to obtain AZ61 magnesium alloy with semi-solid microstructures was proposed. In this route, the squeeze casting was used to predeform the magnesium alloy billets to obtain small dendritic structures. During subsequent partial remelting, small dendritic structures transform into globular grains surrounded by liquid films. The results show that the squeeze casting AZ61 alloy after partial remelting produces more ideal, finer semi-solid microstructure compared with as-cast AZ61 alloy treated by the same isothermal holding conditions. Moreover, the mechanical properties of the thixoformed AZ61 alloy prepared by squeeze casting plus partial remelting are better than those of the thixoformed alloy prepared by conventional casting plus partial remelting. 展开更多
关键词 AZ61 magnesium alloy squeeze casting partial remelting mechanical properties
下载PDF
Effects of Alloying Elements on the Microstructures and Mechanical Properties of Heavy Section Ductile Cast Iron 被引量:14
11
作者 G.S.Cho K.H.Choe +1 位作者 K.W.Lee A.Ikenaga 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第1期97-101,共5页
The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Mea... The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries. 展开更多
关键词 Heavy section ductile cast iron alloying elements As-cast microstructures As-cast mechanical properties
下载PDF
Microstructure,mechanical properties and corrosion behavior of Al-Si-Cu-Zn-X(X=Bi,Sb,Sr) die cast alloy 被引量:15
12
作者 Saeed FARAHANY Ali OURDJ1NI Hamid Reza BAKHSHESHI-RAD 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期28-38,共11页
The microstructure evolution, mechanical and corrosion properties of Al-11Si-2Cu-0.8Zn die cast alloy treated with Bi, Sb and Sr additions were investigated. The results of mechanical testing showed that all additions... The microstructure evolution, mechanical and corrosion properties of Al-11Si-2Cu-0.8Zn die cast alloy treated with Bi, Sb and Sr additions were investigated. The results of mechanical testing showed that all additions increased impact toughness, ultimate tensile strength, and elongation of the alloy as a result of change in eutectic Si morphology. The analysis of fracture surfaces revealed that with addition of Sr and to lesser extent Bi and Sb, the alloy exhibited a predominantly ductile fracture rather than quasi-cleavage brittle fracture. Moreover, with the additions of Sr, Bi and Sb, the quality index increased to 164.7 MPa, 156.3 MPa and 152.6 MPa respectively from 102 MPa for the base alloy. Polarization corrosion tests conducted in sodium chloride solution showed that the corrosion potential shifted to more negative values with additions of Sb, Bi and Sr, respectively. Corrosion immersion tests also revealed that the element additions have a detrimental effect on the corrosion rate of alloys, due to the increase of boundaries between the Al and eutectic Si phases. 展开更多
关键词 aluminium die cast alloy melt treatment mechanical properties FRACTURE corrosion
下载PDF
Surface quality, microstructure and mechanical properties of Cu-Sn alloy plate prepared by two-phase zone continuous casting 被引量:1
13
作者 刘雪峰 罗继辉 王晓晨 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1901-1910,共10页
Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate... Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved. 展开更多
关键词 Cu-Sn alloy plate two-phase zone continuous casting surface quality grains-covered grains microstructure mechanical property
下载PDF
Effect of Cooling Rate after hot Deformation on Structure and Mechanical Properties of Low Alloy Wear Resistance Cast iron
14
作者 刘剑平 李丽霞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期258-261,共4页
The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of pro... The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of properties. The results show that for the cast steel after deformed, the amount of granular carbides of precipitation during the cooling decreased with the increase of the cooling rate, but the hardness was obviously enhanced, as a result, better mechanical properties will be obtained by force air cooling(cooling rate is about 7 ℃·s-1). And the reason of the change for structure and mechanical properties of the cast steel were analyzed. 展开更多
关键词 hot deformation low alloy wear resistance cast iron cooling rate structure and mechanical properties rare earths
下载PDF
Microstructure and mechanical properties of Al-6Zn-2.5Mg-1.8Cu alloy prepared by squeeze casting and solid hot extrusion 被引量:3
15
作者 方虹泽 李润霞 +4 位作者 陈瑞润 于宝义 曲迎东 荀诗文 李荣德 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2130-2136,共7页
Al-6Zn-2.5Mg-1.8Cu alloy ingots were prepared by squeeze casting under different specific pressures,and the fresh ingot with best mechanical properties was solid hot extruded.With the increase of the specific pressure... Al-6Zn-2.5Mg-1.8Cu alloy ingots were prepared by squeeze casting under different specific pressures,and the fresh ingot with best mechanical properties was solid hot extruded.With the increase of the specific pressure from 0 to 250 MPa,the dendrites became round and small.Because the applied pressure increased the solid solubility of alloying elements,the number of MgZn2 phases decreased.When the specific pressure increased from 250 MPa to 350 MPa,the grain size increased.After solid hot extrusion,the a(Al) grains were refined obviously and the MgZn2 phases were uniformly dispersed in the microstructure.After solid hot extrusion,the ultimate tensile strength was 605.67 MPa and the elongation was 8.1%,which were improved about 32.22%and15.71%,respectively,compared with those of the metal mold casting alloy.The fracture modes of the billet prepared by the metal mold casting and by squeeze casting were intergranular and quasi-cleavage fractures,respectively,whereas,that of the solid hot extrusion was mainly dimple fracture.The refined crystalline strengthening was the main reason to improve the strength and elongation of alloy. 展开更多
关键词 AlZn alloy squeeze casting solid hot extrusion dynamic recrystallization microstructure mechanical properties
下载PDF
Evaluation of the microstructure, secondary dendrite arm spacing, and mechanical properties of Al–Si alloy castings made in sand and Fe–Cr slag molds
16
作者 I.Narasimha Murthy J.Babu Rao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第7期784-793,共10页
The microstructure and mechanical properties of as-cast A356(Al–Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome(Fe–Cr) slag, and a mixture of sa... The microstructure and mechanical properties of as-cast A356(Al–Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome(Fe–Cr) slag, and a mixture of sand and Fe–Cr. A sodium silicate–CO_2 process was used to make the necessary molds. Cylindrical-shaped castings were prepared. Cast products with no porosity and a good surface finish were achieved in all of the molds. These castings were evaluated for their metallography, secondary dendrite arm spacing(SDAS), and mechanical properties, including hardness, compression, tensile, and impact properties. Furthermore, the tensile and impact samples were analyzed by fractography. The results show that faster heat transfer in the Fe–Cr slag molds than in either the silica sand or mixed molds led to lower SDAS values with a refined microstructure in the products cast in Fe–Cr slag molds. Consistent and enhanced mechanical properties were observed in the slag mold products than in the castings obtained from either sand or mixed molds. The fracture surface of the slag mold castings shows a dimple fracture morphology with a transgranular fracture nature. However, the fracture surfaces of the sand mold castings display brittle fracture. In conclusion, products cast in Fe–Cr slag molds exhibit an improved surface finish and enhanced mechanical properties compared to those of products cast in sand and mixed molds. 展开更多
关键词 silica sand ferrochrome slag alloy castings secondary dendrite arm spacing mechanical properties
下载PDF
Effect of rheo-diecast process on the mechanical properties of A390 alloy by serpentine channel
17
作者 Kunhyok Ri Wei-min Mao +2 位作者 Zhi-kai Zheng Myongsik Kim Yongho Sin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第10期1177-1186,共10页
In this paper, the effects of rheo-diecast process parameters and T6 heat treatment on the microstructure and mechanical properties of the rheo-diecasting(RDC) semi-solid A390 alloy prepared through pure copper serp... In this paper, the effects of rheo-diecast process parameters and T6 heat treatment on the microstructure and mechanical properties of the rheo-diecasting(RDC) semi-solid A390 alloy prepared through pure copper serpentine channel were investigated. The results indicate that the mechanical properties of the RDC samples change with the pouring temperature and injection pressure. In this case, a lower pouring temperature results in better tensile strength and elongation of the RDC A390 alloy; however, the tensile strength and elongation decrease when the pouring temperature decreases to 660°C. Higher injection pressures result in the improved mechanical properties of the RDC A390 alloy. To some extent, T6 heat treatment improves the tensile strength and ductility of the RDC A390 alloy compared to those of the non-heat treated alloy. However, when the pouring temperature and injection pressure are greater than 670°C and 70 MPa, respectively, the mechanical properties are sharply diminished. 展开更多
关键词 aluminum alloys diecasting rheo-casting microstructure mechanical properties
下载PDF
Microstructure and mechanical properties of NZ30K alloy by semi-continuous direct chill and sand mould casting processes 被引量:25
18
作者 Zheng Xingwei Dong Jie +1 位作者 Liu Wencai Ding Wenjiang 《China Foundry》 SCIE CAS 2011年第1期41-46,共6页
The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K) alloys were prepared by direct-chill casting (DCC) and sand mould casting (SMC) processes,respectively and their microstructures and mechanical properties were investigated.The results... The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K) alloys were prepared by direct-chill casting (DCC) and sand mould casting (SMC) processes,respectively and their microstructures and mechanical properties were investigated.The results indicate that casting method plays a remarkable influence on the microstructure and mechanical properties of as-cast NZ30K alloy.The grain size increases from 35-40μm in the billets made by the DCC to about 100-120μm in the billets by the SMC.The aggregation of Mg12Nd usually found at the triple joints of grain boundaries in the billets prepared by SMC while is not observable from the billets by DCC.The tensile strengths and elongations of the billets are 195.2 MPa and 15.5% by DCC,and 162.5 MPa and 3.2% by SMC,respectively.The tensile strength of the alloy by DCC is remarkably enhanced by T6 heat treatment,which reached 308.5 MPa.Fracture surfaces of NZ30K alloy have been characterized as intergranular fracture by SMC and quasi-cleavage fracture by DCC,respectively. 展开更多
关键词 NZ30K alloy direct-chill casting MICROSTRUCTURE mechanical properties
下载PDF
Microstructure and mechanical properties of BFe10 cupronickel alloy tubes fabricated by a horizontal continuous casting with heating-cooling combined mold technology 被引量:13
19
作者 Jun Mei Xin-hua Liu Jian-xin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第4期339-347,共9页
A new horizontal continuous casting method with heating-cooling combined mold (HCCM) technology was explored for fabri- cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes. The microst... A new horizontal continuous casting method with heating-cooling combined mold (HCCM) technology was explored for fabri- cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes. The microstructure and mechanical properties of BFe 10 cupronickel alloy tubes fabricated by HCCM and traditional continuous casting (cooling mold casting) were comparatively investigated. The results show that the tube fabricated by HCCM has smooth internal and external surfaces without any defects, and its internal and external surface roughnesses are 0.64 μm and 0.85 μm, respectively. The tube could be used for subsequent cold processing without other treatments such as surface planning, milling and acid-washing. This indicates that HCCM can effectively reduce the process flow and improve the pro- duction efficiency of a BFel0 cupronickel alloy tube. The tube has columnar grains along its axial direction with a major casting texture of {012}〈 621 〉. Compared with cooling mold casting (6 = 36.5%), HCCM can improve elongation (3 = 46.3%) by 10% with a slight loss of strength, which indicates that HCCM remarkably improves the cold extension performance of a BFe 10 cupronickel alloy tube. 展开更多
关键词 cupronickel alloys thin-wall tubes continuous casting microstructure mechanical properties
下载PDF
Influence of high pressure and manganese addition on Fe-rich phases and mechanical properties of hypereutectic Al-Si alloy with rheo-squeeze casting 被引量:12
20
作者 Chong LIN Shu-sen WU +2 位作者 Shu-lin Lü He-bao WU Han-xin CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第2期253-262,共10页
The influence of high pressure and manganese addition on Fe-rich phases(FRPs)and mechanical properties of Al-14Si-2Fe alloy with rheo-squeeze casting(RSC)was investigated.The semi-solid alloy melt was treated by ultra... The influence of high pressure and manganese addition on Fe-rich phases(FRPs)and mechanical properties of Al-14Si-2Fe alloy with rheo-squeeze casting(RSC)was investigated.The semi-solid alloy melt was treated by ultrasonic vibration(UV)firstly,and then formed by squeeze casting(SC).Results show that the FRPs in as-cast SC alloys are composed of coarseβ-Al5(Fe,Mn)Si,δ-Al4(Fe,Mn)Si2 and bone-shapedα-Al15(Fe,Mn)3Si2 phases when the pressure is 0 MPa.With RSC process,the FRPs are first refined by UV,and then the solidification under pressure further causes the grains to become smaller.The peritectic transformation occurs during the formation ofαphase.For the alloy with the same composition,the ultimate tensile strength(UTS)of RSC sample is higher than that of the SC sample.With the same forming process,the UTS of Al-14Si-2Fe-0.8Mn alloy is higher than that of Al-14Si-2Fe-0.4Mn alloy. 展开更多
关键词 high pressure MANGANESE rheo-squeeze casting hypereutectic Al-Si alloy Fe-rich phases mechanical properties
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部