CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that...CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that three CeO2-based oxygen storage materials are all forming homogeneous solid solution.Among the samples,CeO2-ZrO2-Al2O3(CZA)has the best textural properties and excellent thermal stability.The specific surface area and pore volume of aged CZA are 90 m2/g and 0.29 mL/g.We proposed a viewpoint:Al3+ might insert among the interspace of fluorite structure or highly dispersal in solid solutions.展开更多
A series of CoMo/ZrO2-Al2O3 catalysts with different contents of ZrO2 were prepared and characterized through XRD,XPS,NH3-TPD,H2-TPR,HR-TEM,and N2 adsorption-desorption technologies.The performance of the catalysts fo...A series of CoMo/ZrO2-Al2O3 catalysts with different contents of ZrO2 were prepared and characterized through XRD,XPS,NH3-TPD,H2-TPR,HR-TEM,and N2 adsorption-desorption technologies.The performance of the catalysts for low-temperature coal tar(LTCT)hydrocracking reaction was investigated.The interaction between active metals and Al2O3 was weakened with the introduction of ZrO2,which increased the MoS2 content and the stack layer number of MoS2 slabs to further promote the catalytic performance.At the same time,the amount of acid sites increased with an increasing ZrO2 content.When the ZrO2 content reached 32%,the pore volume of the catalyst decreased significantly.This phenomenon reduced the content of MoS2 and the stack layer number of MoS2 slabs,which were not conducive to improving the catalytic performance.The catalyst containing 24%of ZrO2 exhibited the best catalytic performance for hydrocracking reaction,with the residue conversion and the total yield of gasoline and diesel fractions reaching 60.64%and 66.54%,respectively,which could fulfill the requirements for hydrocracking LTCT.展开更多
Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub&...Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.展开更多
文摘CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that three CeO2-based oxygen storage materials are all forming homogeneous solid solution.Among the samples,CeO2-ZrO2-Al2O3(CZA)has the best textural properties and excellent thermal stability.The specific surface area and pore volume of aged CZA are 90 m2/g and 0.29 mL/g.We proposed a viewpoint:Al3+ might insert among the interspace of fluorite structure or highly dispersal in solid solutions.
基金Financial support from the National Nature Science Foundation of China(21968034)is gratefully acknowledged.
文摘A series of CoMo/ZrO2-Al2O3 catalysts with different contents of ZrO2 were prepared and characterized through XRD,XPS,NH3-TPD,H2-TPR,HR-TEM,and N2 adsorption-desorption technologies.The performance of the catalysts for low-temperature coal tar(LTCT)hydrocracking reaction was investigated.The interaction between active metals and Al2O3 was weakened with the introduction of ZrO2,which increased the MoS2 content and the stack layer number of MoS2 slabs to further promote the catalytic performance.At the same time,the amount of acid sites increased with an increasing ZrO2 content.When the ZrO2 content reached 32%,the pore volume of the catalyst decreased significantly.This phenomenon reduced the content of MoS2 and the stack layer number of MoS2 slabs,which were not conducive to improving the catalytic performance.The catalyst containing 24%of ZrO2 exhibited the best catalytic performance for hydrocracking reaction,with the residue conversion and the total yield of gasoline and diesel fractions reaching 60.64%and 66.54%,respectively,which could fulfill the requirements for hydrocracking LTCT.
文摘Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.