期刊文献+
共找到2,765篇文章
< 1 2 139 >
每页显示 20 50 100
Pervaporation performance and characterization of hydrophilic ZSM-5 zeolite membranes for high inorganic acid and inorganic salts
1
作者 Huanxu Teng Ronghui You +7 位作者 Huanyi Li Siqi Shao Qi Zhou Ying Yang Ting Wu Meihua Zhu Xiangshu Chen Hidetoshi Kita 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期27-33,共7页
The hydrophilic ZSM-5 zeolite membranes are applied to separate the inorganic acid solutions and inorganic acid/inorganic salt mixtures by pervaporation,and the membrane presents good stability,dehydration,and desalin... The hydrophilic ZSM-5 zeolite membranes are applied to separate the inorganic acid solutions and inorganic acid/inorganic salt mixtures by pervaporation,and the membrane presents good stability,dehydration,and desalination performance.Influences of inorganic acid type(H_(2)SO_(4),H_(3)PO_(4),HNO_(3),and HCl),H_(2)SO_(4)concentration(1-6 mol·L^(-1)),test temperature(60-90℃)and inorganic acid/inorganic salt type(2 mol·L^(-1)H_(2)SO_(4)and sulfate,2 mol·L^(-1)H3PO4 and phosphate)on the pervaporation performance are investigated in this work.Either for concentrating 3%(mass)H_(2)SO_(4)solution or consecutive dehydrating 20%(mass)H_(2)SO_(4)solution,the hydrophilic ZSM-5 zeolite membrane has a good dehydration performance and stability.Even though the H_(2)SO_(4)concentration and test temperature are increased to 6 M and 90℃,only H_(2)O molecules could pass through the membrane and pH value of the permeation is kept neutral.Besides,the membrane has good dehydration and desalination performance for H_(2)SO_(4)/sulfates and H_(3)PO_(4)/phosphate mixtures,and the rejection of natrium salt,molysite,and magnesium is almost 100%. 展开更多
关键词 Hydrophilic zsm-5 zeolite membranes Inorganic acid Inorganic salt pervaporation DESALINATION
下载PDF
Synthesis and characterization of an unusual snowflake-shaped ZSM-5 zeolite with high catalytic performance in the methanol to olefin reaction 被引量:16
2
作者 李静 刘粟侥 +3 位作者 张怀科 吕恩静 任鹏举 任杰 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第2期308-315,共8页
The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 ... The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 adsorption-desorption,X-ray fluorescence spectroscopy,scanning electron microscopy,X-ray diffraction,magic angle spinning nuclear magnetic resonance,temperature-programmed desorption of ammonia,and infrared spectroscopy of pyridine adsorption.The results suggest that the BET surface area and SiO2/Al2O3 ratio of these samples are similar,while the snowflake-shaped ZSM-5 zeolite possesses more of the(101) face,and distortion,dislocation,and asymmetry in the framework,resulting in a larger number of acid sites than the conventional samples.Catalysts for the methanol to olefin(MTO) reaction were prepared by loading Ca on the samples.The snowflake-shaped Ca/ZSM-5 zeolite exhibited excellent selectivity for total light olefin(72%) and propene(39%) in MTO.The catalytic performance influenced by the morphology can be mainly attributed to the snowflake-shaped ZSM-5 zeolite possessing distortion,dislocation,and asymmetry in the framework,and lower diffusion limitation than the conventional samples. 展开更多
关键词 zsm-5 zeolite MODIFICATION Methanol to olefins
下载PDF
Preparation of Zn-modified nano-ZSM-5 zeolite and its catalytic performance in aromatization of 1-hexene 被引量:6
3
作者 王高亮 吴伟 +4 位作者 昝望 白雪峰 王文静 戚鑫 O.V.KIKHTYANIN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1580-1586,共7页
The promoting effect of introducing Zn into nano-ZSM-5 zeolites by conventional impregnation method and isomorphous substitution on the performance of 1-hexene aromatization was investigated. The nano-ZSM-5 zeolite wa... The promoting effect of introducing Zn into nano-ZSM-5 zeolites by conventional impregnation method and isomorphous substitution on the performance of 1-hexene aromatization was investigated. The nano-ZSM-5 zeolite was synthesized by a seed-induced method without organic templates. The Zn-modified nano-ZSM-5 zeolite catalysts, xZ n/HNZ5 and y Zn/Al-HNZ5, were prepared by the conventional impregnation method and isomorphous substitution, respectively. The structure, chemical composition and acidity of the catalysts were characterized by XRD, XRF, N2 adsorption, SEM, NH3-TPD and Py-IR, while the catalytic properties were evaluated at 480 °C and a weight hourly space velocity(WHSV) of 2.0 h-1 in the aromatization procedure of 1-hexene. Compared with xZ n/HNZ5, y Zn/Al-HNZ5 exhibited smaller particles and higher dispersion of Zn species, which led to greater intergranular mesopore and homogeneous acidity distribution. Experimental results indicated that the synergy effect between the Brnsted and Lewis acid sites of the isomorphously substituted nano-ZSM-5 zeolites could significantly increase aromatics yield and improve catalytic stability in the 1-hexene aromatization. 展开更多
关键词 nano-zsm-5 zeolite Zn-modification catalytic performance isomorphous substitution AROMATIZATION
下载PDF
Alkali-metal-modified ZSM-5 zeolites for improvement of catalytic dehydration of lactic acid to acrylic acid 被引量:8
4
作者 袁川 刘华彦 +3 位作者 张泽凯 卢晗锋 朱秋莲 陈银飞 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1861-1866,共6页
Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA).... Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1). 展开更多
关键词 zsm-5 zeolite Alkali metal Lactic acid Acrylic acid Dehydration
下载PDF
Effects of Light Rare Earth on Acidity and Catalytic Performance of HZSM-5 Zeolite for Catalytic Cracking of Butane to Light Olefins 被引量:33
5
作者 王晓宁 赵震 +3 位作者 徐春明 段爱军 张莉 姜桂元 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第3期321-328,共8页
The effects of rare earth(RE)on the structure,acidity,and catalytic performance of HZSM-5 zeolite were investigated.A series of RE/HZSM-5 catalysts,containing 7.54% RE(RE=La,Ce,Pr,Nd,Sm,Eu or Gd),were prepared by ... The effects of rare earth(RE)on the structure,acidity,and catalytic performance of HZSM-5 zeolite were investigated.A series of RE/HZSM-5 catalysts,containing 7.54% RE(RE=La,Ce,Pr,Nd,Sm,Eu or Gd),were prepared by the impregnation of the ZSM-5 type zeolites(Si/Al=64:1)with the corresponding RE nitrate aqueous solutions.The catalysts were characterized by means of FT-IR,UV-Vis,NH3-TPD,and IR spectroscopy of adsorbed pyridine.The catalytic performances of the RE/HZSM-5 for the catalytic cracking of mixed butane to light olefins were also measured with a fixed bed microreactor.The results revealed that the addition of light rare earth metal on the HZSM-5 catalyst greatly enhanced the selectivity to olefins,especially to propylene,thus increasing the total yield of olefins in the catalytic cracking of butane.Among the RE-modified HZSM-5 samples,Ce/HZSM-5 gave the highest yield of total olefins,and Nd/HZSM-5 gave the highest yield of propene at a reaction temperature of 600℃.The presence of rare earth metal on the HZSM-5 sample,not only modified the acidic properties of HZSM-5 including the amount of acid sites and acid type,that is,the ratio of L/B(Lewis acid/Brnsted acid),but also altered the basic properties of it,which in turn promoted the catalytic performance of HZSM-5 for the catalytic cracking of butane. 展开更多
关键词 fight rare earth Hzsm-5 zeolite catalytic cracking BUTANE ACIDITY
下载PDF
Aromatization over nanosized Ga-containing ZSM-5 zeolites prepared by different methods:Effect of acidity of active Ga species on the catalytic performance 被引量:10
6
作者 Yujun Fang Xiaofang Su +4 位作者 Xuefeng Bai Wei Wu Gaoliang Wang Linfei Xiao Anran Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期768-775,共8页
Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of... Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of 1-hexene was investigated. The results indicate that isomorphous substitution promotes the incorporation of Ga heteroatoms into the framework along with the formation of extra-framework GaO;species([GaO;]a) that have stronger interactions with the negative potential of the framework. In addition, based on the Py-IR results and catalytic performance, the [GaO;]aspecies with stronger Lewis acid sites produced a better synergism with moderate Br?nsted acid sites and thus improved the selectivity to aromatic compounds. However, the impregnation results in the formation of Ga;O;phase and small amounts of GaO;species that are mainly located on the external surface([GaO;];), which contribute to weaker Lewis acid sites due to weaker interactions with the zeolite framework. During 1-hexene aromatization, the nanosized Ga isomorphously substituted ZSM-5 zeolite samples(Gax-NZ5) exhibited better catalytic performance compared to the impregnated samples, and the highest aromatic yield(i.e.,65.4 wt%) was achieved over the Ga4.2-NZ5 sample, which contained with the highest Ga content. 展开更多
关键词 Nanosized zsm-5 zeolite Isomorphous substitution IMPREGNATION Active gallium species AROMATIZATION
下载PDF
Thermal and hydrothermal stabilities of the alkali-treated HZSM-5 zeolites 被引量:10
7
作者 Yuning Li Dong Liu +4 位作者 Shenglin Liu Wei Wang Sujuan Xie Xiangxue Zhu Longya Xu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第1期69-74,共6页
HZSM-5 zeolites with the micro-mesopore hierarchical porosity have been prepared by the post-synthesis of alkali-treatment, and their thermal and hydrothermal stabilities were studied using DTA, XRD, and NH3-TPD chara... HZSM-5 zeolites with the micro-mesopore hierarchical porosity have been prepared by the post-synthesis of alkali-treatment, and their thermal and hydrothermal stabilities were studied using DTA, XRD, and NH3-TPD characterization techniques. Compared to the unmodified zeolite, the thermal and hydrothermal stabilities of the alkali-treated ZSM-5 zeolites were slightly deteriorated because of the introduction of mesopores caused by the desilication. Nevertheless, the alkali-treated zeolite framework could be maintained until the temperature increased to 1175 ℃. 展开更多
关键词 zsm-5 zeolite alkali-treatment thermal stability hydrothermal stability
下载PDF
Catalytic roles of the acid sites in different pore channels of H‐ZSM‐5 zeolite for methanol‐to‐olefins conversion 被引量:10
8
作者 Sen Wang Zhikai Li +4 位作者 Zhangfeng Qin Mei Dong Junfen Li Weibin Fan Jianguo Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第7期1126-1136,共11页
H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framewor... H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framework,the catalytic roles of the acid sites in different pore channels of the H‐ZSM‐5 zeolite are not well understood.In this study,the MTO reaction network,involving the aromatic cycle,alkene cycle,and aromatization process,and also the diffusion behavior of methanol feedstock and olefin and aromatic products at different acid sites in the straight channel,sinusoidal channel,and intersection cavity of H‐ZSM‐5 zeolite was comparatively investigated using density functional theory calculations and molecular dynamic simulations.The results indicated that the aromatic cycle and aromatization process occurred preferentially at the acid sites in the intersection cavities with a much lower energy barrier than that at the acid sites in the straight and sinusoidal channels.In contrast,the formation of polymethylbenzenes was significantly suppressed at the acid sites in the sinusoidal and straight channels,whereas the alkene cycle can occur at all three types of acid sites with similar energy barriers and probabilities.Consequently,the catalytic performance of H‐ZSM‐5 zeolite for MTO conversion,including activity and product selectivity,can be regulated properly through the purposive alteration of the acid site distribution,viz.,the location of Al in the zeolite framework.This study helps to elucidate the relation between the catalytic performance of different acid sites in the H‐ZSM‐5 zeolite framework for MTO conversion,which should greatly benefit the design of efficient catalyst for methanol conversion. 展开更多
关键词 Methanol‐to‐olefins H‐zsm5 zeolite Acid site distribution Density functional theory calculation Molecular dynamic simulation
下载PDF
Adsorption of Benzene and Propylene in Zeolite ZSM-5:Grand Canonical Monte Carlo Simulations 被引量:7
9
作者 SUN Xiao-yan LI Jian-wei +2 位作者 LI Ying-xia YAN Shi-cheng CHEN Biao-hua 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2009年第3期377-382,共6页
The adsorption behavior of benzene and propylene in zeolite ZSM-5 was studied by Grand Canonical Monte Carlo(GCMC) simulations. It could be found that benzene and propylene molecules showed different adsorption beha... The adsorption behavior of benzene and propylene in zeolite ZSM-5 was studied by Grand Canonical Monte Carlo(GCMC) simulations. It could be found that benzene and propylene molecules showed different adsorption behavior in the zeolite cavities. The loadings of propylene were significantly larger than those of benzene at 100 kPa. From the figures of potential energy distribution, the potential energy of benzene/zeolite was more negative than that of propylene/zeolite, so benzene could be adsorbed more stably than propylene. When the temperature was in- creased from 298 to 443 K at 100 kPa, the loading ofpropylene was reduced from 99 to 82 molecules, whereas that of benzene changed little. When benzene and propylene were adsorbed in zeolite simultaneously, the competitive adsorption of them occurred; therefore, the potential energy distribution could be changed significantly. Besides, the adsorption isotherms of benzene and propylene in ZSM-5 at 298 and 443 K were simulated. The results exhibit that the different factors influenced the molecular adsorption at various temperatures and pressures, leading to the diffe- rent rules for the adsorption of benzene and propylene molecules in the zeolite. At a low pressure, the unfavorable energy of propylene/zeolite and the "commensurate freezing" phenomenon of benzene would make the loadings of itself higher than those of propylene. When pressure was higher than 5 kPa, the adsorption of benzene in ZSM-5 would nearly reach saturation. 展开更多
关键词 zsm-5 zeolite ADSORPTION Grand canonical monte carlo
下载PDF
Effect of combining the metals of group VI supported on H-ZSM-5 zeolite as catalysts for non-oxidative conversion of natural gas to petrochemicals 被引量:5
10
作者 A. K. Aboul-Gheit A. E. Awadallah 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第1期71-77,共7页
The most prestigious catalyst applied in natural gas (methane) non-oxidative conversion to petrochemicals is 6%Mo/H-ZSM-5. Chromium, molybdenum and tungsten are the group VI metals. Hence, in this work, 6%Mo/H-ZSM-5... The most prestigious catalyst applied in natural gas (methane) non-oxidative conversion to petrochemicals is 6%Mo/H-ZSM-5. Chromium, molybdenum and tungsten are the group VI metals. Hence, in this work, 6%Mo/H-ZSM-5 was correlated with 3%Cr+3%Mo/H-ZSM-5 and 3%W+3%Mo/H-ZSM-5 as catalysts to examine their promoting or inhibiting effects on the various reactions taking place during methane conversion. The catalytic activities of these catalysts were tested in a continuous flow fixed bed reactor at 700℃ and a GHSV of 1500 ml·g^-1·h^-1 Characterization of the catalysts using XRD, TGA and TPD were investigated. XRD and NH3-TPD showed greater interaction between the W-phase and the Bronsted acid sites in the channels of the zeolite than between Cr-phase and the acid sites in the zeolite. 展开更多
关键词 natural gas methane BENZENE NAPHTHALENE hydrogen MOLYBDENUM chromium tungsten H-zsm-5 zeolite
下载PDF
Experiment and Modeling of Pure and Binary Adsorption of n-Butane and Butene-1 on ZSM-5 Zeolites with Different Si/Al Ratios 被引量:6
11
作者 王斐 汪文川 +2 位作者 黄世萍 滕加伟 谢在库 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第3期376-386,共11页
Four ZSM-5 zeolite catalysts with different Si/Al ratios for the catalytic cracking of C4 fractions to produce ethylene and propylene were prepared in this study.First,the adsorption isotherms of pure n-butane and but... Four ZSM-5 zeolite catalysts with different Si/Al ratios for the catalytic cracking of C4 fractions to produce ethylene and propylene were prepared in this study.First,the adsorption isotherms of pure n-butane and butene-1 and their mixtures on these catalysts at 300K and p=0—100kPa were measured using the intelligent gra- vimetric analyzer.The experimental results indicate that the presence of Al can significantly affect the adsorption of butene-1 than that of n-butane on ZSM-5 zeolites.Then,the double Langmuir(DL)model was applied to study the pure gas adsorption on ZSM-5 zeolites for pure n-butane and butene-1.By combining the DL model with the ideal adsorbed solution theory(IAST),the IAST-DL model was applied to model the butene-1(1)/n-butane(2)binary mixture adsorption on ZSM-5 zeolites with different Si/Al ratios.The calculated results are in good agreement with the experimental data,indicating that the IAST-DL model is effective for the present systems.Finally,the adsorp- tion over a wide range of variables was predicted at low pressure and 300K by the model proposed.It is found that the selectivity of butene-1 over n-butane increases linearly with the decrease of Si/Al ratio.A correlation between the selectivity and Si/Al ratio of the sample was proposed at 300K and p=0.08MPa. 展开更多
关键词 zsm-5 zeolite N-BUTANE BUTENE-1 -adsorption isotherm Si/Al ratio SELECTIVITY
下载PDF
Solvent-free crystallization of ZSM-5 zeolite on SiC foam as a monolith catalyst for biofuel upgrading 被引量:5
12
作者 Qiuyan Zhu Yeqing Wang +4 位作者 Lingxiang Wang Zhiyuan Yang Liang Wang Xiangju Meng Feng-Shou Xiao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第7期1118-1124,共7页
Conventional synthesis of monolith-supported zeolite catalysts is based on a hydrothermal strategy.Here,we report a solvent-free crystallization process to coat ZSM-5 zeolite crystals on a monolithic SiC foam with a h... Conventional synthesis of monolith-supported zeolite catalysts is based on a hydrothermal strategy.Here,we report a solvent-free crystallization process to coat ZSM-5 zeolite crystals on a monolithic SiC foam with a honeycomb structure(ZSM-5/SiC).Characterizations of the ZSM-5/SiC by scanning electron microscopy,N2 sorption,and X-ray diffraction indicate that the zeolite sheath has been ideally coated on the surface of the SiC foam with high purity and crystallinity.Fixing Pd nanoparticles within the ZSM-5 zeolite crystals delivers a bifunctional Pd@ZSM-5/SiC catalyst,which exhibits high activity and selectivity toward diesel range paraffins in the hydrodeoxygenation of methyl oleate,a model molecule for biofuel.In comparison to the powder Pd@ZSM-5,the Pd@ZSM-5/SiC monolith catalyst shows more efficiency,which is attributed to the fast mass transfer and high heat conductivity on the honeycomb SiC structure.The durability test indicates that the Pd@ZSM-5/SiC catalyst is stable under the reaction and high-temperature regeneration conditions. 展开更多
关键词 zeolite Pd@zsm-5/SiC Monolith catalyst SIC SOLVENT-FREE
下载PDF
Effects of Calcination Temperature on the Acidity and Catalytic Performances of HZSM-5 Zeolite Catalysts for the Catalytic Cracking of n-Butane 被引量:4
13
作者 Jiangyin Lu Zhen Zhao Chunming Xu Aijun Duan Pu Zhang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第4期213-220,共8页
The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total ... The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total acid amounts, their density and the amount of B-type acid of HZSM-5 catalysts rapidly decreased, while the amounts of L-type acid had almost no change and thus the ratio of L/B was obviously enhanced with the increase of calcination temperature (excluding 800 ℃). The catalytic performances of modified HZSM-5 catalysts for the cracking of n-butane were also investigated. The main properties of these catalysts were characterized by means of XRD, N2 adsorption at low temperature, NH3-TPD, FTIR of pyridine adsorption and BET surface area measurements. The results showed that HZSM-5 zeolite pretreated at 800 ℃ had very low catalytic activity for n-butane cracking. In the calcination temperature range of 500-700 ℃, the total selectivity to olefins, propylene and butene were increased with the increase of calcination temperature, while, the selectivity for arene decreased with the calcination temperature. The HZSM-5 zeolite calcined at 700 ℃ produced light olefins with high yield, at the reaction temperature of 650 ℃ the yields of total olefins and ethylene were 52.8% and 29.4%, respectively. Besides, the more important role is that high calcination temperature treatment improved the duration stability of HZSM-5 zeolites. The effect of calcination temperature on the physico-chemical properties and catalytic performance of HZSM-5 for cracking of n-butane was explored. It was found that the calcination temperature had large effects on the surface area, crystallinity and acid properties of HZSM-5 catalyst, which further affected the catalytic performance for n-butane cracking. 展开更多
关键词 Hzsm-5 zeolite catalyst acidic modification calcination temperature N-BUTANE catalytic cracking OLEFIN
下载PDF
A novel method for enhancing the stability of ZSM-5 zeolites used for catalytic cracking of LPG: Catalyst modification by dealumination and subsequent silicon loading 被引量:3
14
作者 Leyla Vafi Ramin Karimzadeh 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第4期628-635,共8页
Composite structures of ZSM‐5 zeolites were prepared by the synthesis of mesopores and mi‐cropores using carbon nanotubes as a template. Dealumination of mesopores was performed selec‐tively using trichloroacetic a... Composite structures of ZSM‐5 zeolites were prepared by the synthesis of mesopores and mi‐cropores using carbon nanotubes as a template. Dealumination of mesopores was performed selec‐tively using trichloroacetic acid, which could only diffuse into the mesopores and not the mi‐cropores owing to the size of the trichloroacetic acid molecules. Empty spaces are created in the catalyst as a result of removal of the Al atoms from the zeolite structure. If Si atoms fill the empty space, then the structure of the mesopores becomes similar to silicates, which do not have any cata‐lytic properties. Silicon containing solution was used to fill the empty spaces, and in doing so, a unique method was developed, by which silicon atoms can directly replace the extracted Al atoms from the mesopore structure. Therefore, by changing the geometry and properties of the mesopores and micropores, the amount of coke reduced from 14%for HZSM‐5 to 3%for the modified zeolite. 展开更多
关键词 MESOPORES Carbon nanotube zsm-5 zeolite DEALUMINATION Trichloroacetic acid
下载PDF
Disproportionation of Toluene by Modified ZSM-5 Zeolite Catalysts with High Shape-selectivity Prepared Using Chemical Liquid Deposition with Tetraethyl Orthosilicate 被引量:16
15
作者 腾晖 王军 +1 位作者 任晓乾 陈德民 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期292-298,共7页
Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate).... Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate).Various parameters for preparing catalysts were changed to investigate the suitable conditions.The resulting cata-lysts were tested in a pressured fixed bed reactor and characterized by SEM (scanning electron microscopy).The conversion of toluene and para-xylene selectivity were influenced remarkably by the n(SiO2)/n(Al2O3) ratio of ZSM-5 zeolite,the type and amount of deposition agent,acid and solvent used,and the time and cycle of deposition treatment.TEOS was proved to be a more efficient agent than the conventional polysiloxanes when the deposition amount was low.The catalyst prepared at the suitable conditions exhibited a high para-xylene selectivity of 91.1% with considerable high conversion of 25.6%.SEM analyses confirmed the formation of a layer of amorphous silica on the external surface of ZSM-5 zeolie crystals,which was responsible for the highly enhanced shape-selectivity. 展开更多
关键词 shape-selective catalysis zsm-5 zeolite disproportionation of toluene chemical liquid deposition tet-raethyl orthosilicate
下载PDF
HZSM-35 zeolite catalyzed aldol condensation reaction to prepare acrylic acid and its ester:Effect of its acidic property 被引量:4
16
作者 Zhanling Ma Xiangang Ma +4 位作者 Youming Ni Hongchao Liu Wenliang Zhu Xinwen Guo Zhongmin Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第11期1762-1769,共8页
Acrylic acid(AA)and its ester,methyl acrylate(MA),were produced by a green one‐step aldol condensation reaction of dimethoxymethane and methyl acetate.The reaction was conducted over ZSM‐35 zeolites with different c... Acrylic acid(AA)and its ester,methyl acrylate(MA),were produced by a green one‐step aldol condensation reaction of dimethoxymethane and methyl acetate.The reaction was conducted over ZSM‐35 zeolites with different concentrations of Bronsted acid,which were prepared by the sodium ion‐exchange process with H‐form zeolite.The acidic property of HZSM‐35 was studied in detail through infrared experiments.About 51%of all bridging OH groups were distributed in cages,while 23%and 26%,respectively,were distributed in 10‐and 8‐ring channels.The catalytic performance was enhanced by a high concentration of Bronsted acid,indicating that Bronsted acid is an active site for the aldol condensation reaction.The ZSM‐35 zeolite possessing a concentration of Bronsted acid as high as 0.049 mmol/g demonstrated excellent performance with a MA+AA selectivity of up to 73%. 展开更多
关键词 Aldol condensation Methyl acetate zsm‐35 zeolite Bronsted acid Acrylic acid
下载PDF
Rapid synthesis of ZSM-5 zeolite catalyst for amination of ethanolamine 被引量:3
17
作者 华月明 胡望明 《Journal of Zhejiang University Science》 EI CSCD 2004年第6期705-708,共4页
ZSM-5 zeolite was rapidly synthesized in system containing ethylenediamine from the initial gel: (5?8) Na2O: 44 EDA:Al2O3:100 SiO2:4000 H2O. The crystals were lath-shaped. The effect of pretreatment and alkalinity on... ZSM-5 zeolite was rapidly synthesized in system containing ethylenediamine from the initial gel: (5?8) Na2O: 44 EDA:Al2O3:100 SiO2:4000 H2O. The crystals were lath-shaped. The effect of pretreatment and alkalinity on crystallinity was investigated. The pretreatment of silicate source can cut down the crystallization time. Tuning the system alkalinity and controlling crystallization time can ensure forming of pure crystal. 展开更多
关键词 zsm-5 zeolite SYNTHESIS PRETREATMENT ALKALINITY
下载PDF
Effect of ZSM-5 zeolite morphology on the catalytic performance of the alkylation of toluene with methanol 被引量:9
18
作者 Hongyu Wu Min Liu +4 位作者 Wei Tan Keke Hou Anfeng Zhang Yiren Wang Xinwen Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第4期491-497,共7页
A series of ZSM-5 zeolites, with the morphologies of sphere, sphere with cubic particles on the surface, and cubic particles, were synthesized by hydrothermal method using n-butylamine as the template, assisted by the... A series of ZSM-5 zeolites, with the morphologies of sphere, sphere with cubic particles on the surface, and cubic particles, were synthesized by hydrothermal method using n-butylamine as the template, assisted by the addition of NaC1 and crystal seed. X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray fluorescence (XRF) and temperature-programmed desorption of ammonia (NH3-TPD) were used to characterize these samples. The samples were tested with toluene methylation reaction. The modified sample composed of spherical particles with 3 μm crystal particles on the surface had a para-xylene selectivity of 95% and maintained 79% of the initial conversion after running the reaction for 50 h. This modified samole showed the best stability amonz the tested three modified samoles. 展开更多
关键词 ALKYLATION TOLUENE METHANOL MORPHOLOGY zsm-5
下载PDF
Physicochemical Features of Phosphorus-Modified ZSM-5 Zeolite and Its Performance on Catalytic Pyrolysis to Produce Ethylene 被引量:3
19
作者 柯明 汪燮卿 张凤美 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第6期671-676,共6页
The physicochemical features of phosphorus-modified ZSM-5 zeolites (SiO2/Al2O3 molar ratio is 25) were characterized by XRD(X-ray diffraction), BET(Brunauer, Emmett and Teller spcific surface area measurement), NH3-TP... The physicochemical features of phosphorus-modified ZSM-5 zeolites (SiO2/Al2O3 molar ratio is 25) were characterized by XRD(X-ray diffraction), BET(Brunauer, Emmett and Teller spcific surface area measurement), NH3-TPD(ammonia temperature-programmed desorption) and MASNMR(magic angle spinning nuclear magnetic resonance), and the performance on catalytic pyrolysis to produce ethylene was investigated with a light hydrocarbon fixed bed micro-reactor with n-octane as feed. The results show that the acid site density, acid intensity and hydrothermal stability of ZSM-5 zeolite were improved by phosphorus modification. When P2O5 content in ZSM-5 zeolite is higher than 2.5%, phosphorus modification can prevent ZSM-5 zeolite crystal structure transformation from orthorhombic to monoclinic. In addition, the dealumination of ZSM-5 zeolite framework was moderated by phosphorus modification under high temperature hydrothermal treatment. The results of n-octane pyrolysis on phosphorus-modified ZSM-5 zeolites show that ethylene yields of zeolites with different phosphorus content are almost the same under the same n-octane conversion. However, the modified zeolites with higher pyrolysis activity give lower yield of propene, butene and total olefin than lower pyrolysis activity under the same n-octane conversion. 展开更多
关键词 phosphorus-modified zsm-5 zeolite catalytic pyrolysis ETHYLENE hydrothermal stability magic angle spinning nuclear magnetic resonance
下载PDF
Exploring suitable ZSM-5/MCM-41 zeolites for catalytic cracking of n-dodecane: Effect of initial particle size and Si/Al ratio 被引量:2
20
作者 李国柱 刁振恒 +1 位作者 那金丹 王莅 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第10期1655-1661,共7页
In this study,various ZSM-5/MCM-41 micro/mesoporous zeolite composites have been prepared by alkalidesilication and surfactant-directed recrystallization of ZSM-5.The effects of particle size and Si/Al ratio of initia... In this study,various ZSM-5/MCM-41 micro/mesoporous zeolite composites have been prepared by alkalidesilication and surfactant-directed recrystallization of ZSM-5.The effects of particle size and Si/Al ratio of initial ZSM-5 zeolites on the structure and catalytic performance of ZSM-5/MCM-41 composites are studied.The results of XRD,TEM N_2-adsorption-desorption,NH_3-TPD and in situ FT-IR revealed that ordered hexagonal MCM-41 mesopores with 3-4 nm pore size were formed around ZSM-5 crystals,and the specific surface area and mesopore volume of composites increased with increasing the Si/Al ratio of initial ZSM-5.Catalytic cracking of n-dodecane(550℃,4 MPa) showed that the ZSM-5/MCM-41 composites obtained from the high Si/Al ratio and nano-sized initial ZSM-5 zeolites exhibited superior catalytic performance,with the improvement higher than 87%in the catalytic activities and 21%in the deactivation rate compared with untreated zeolites.This could be ascribed to their suitable pore structure,which enhanced the diffusion of reactant molecules in pores of catalysts. 展开更多
关键词 zsm-5/MCM-41 zeolite DESILICATION RECRYSTALLIZATION Catalytic cracking
下载PDF
上一页 1 2 139 下一页 到第
使用帮助 返回顶部