The objective of this study is to explore the optimum composition of Y and ZSM-5 zeolites to develop novel catalysts for obtaining lower gasoline olefins content and higher propylene yield. Five composite zeolite cata...The objective of this study is to explore the optimum composition of Y and ZSM-5 zeolites to develop novel catalysts for obtaining lower gasoline olefins content and higher propylene yield. Five composite zeolite catalysts with varying Y zeolite/ZSM-5 zeolite ratios have been prepared in this work to investigate the synergy between the Y zeolite and ZSM-5 zeolite on the selectivity to protolytic cracking, β-scission, oligomerization, and hydrogen transfer reactions using a FCC naphtha feedstock at 480 ℃ in a confined fluidized bed reactor. Experimental results showed that the composite catalyst with a Y zeolite/ZSM-5 zeolite ratio of 1:4 had the highest protolytic cracking and β-scission ability, which was even higher than that of pure ZSM-5 catalyst. On the other hand, the catalyst with a Y zeolite/ZSM-5 zeolite ratio of 3:2 exhibited the strongest hydrogen transfer functionality while the pure Y zeolite based catalyst had the highest oligomerization ability. For all the catalysts tested, increasing conversion enhanced the selectivity to protolytic cracking and hydrogen transfer reactions but reduced the selectivity to β-scission reaction. However, no clear trend was identified for the selectivity to oligomerization when an increased conversion was experienced.展开更多
ZSM-5 zeolite was rapidly synthesized in system containing ethylenediamine from the initial gel: (5?8) Na2O: 44 EDA:Al2O3:100 SiO2:4000 H2O. The crystals were lath-shaped. The effect of pretreatment and alkalinity on...ZSM-5 zeolite was rapidly synthesized in system containing ethylenediamine from the initial gel: (5?8) Na2O: 44 EDA:Al2O3:100 SiO2:4000 H2O. The crystals were lath-shaped. The effect of pretreatment and alkalinity on crystallinity was investigated. The pretreatment of silicate source can cut down the crystallization time. Tuning the system alkalinity and controlling crystallization time can ensure forming of pure crystal.展开更多
The adsorption equilibria of n-heptane, n-octane and n-nonane on silicalite and ZSM-5 have been measured in the temperature range of 373.15--473.15K under low pressure (0---5.332kPa). All the experimental data can be ...The adsorption equilibria of n-heptane, n-octane and n-nonane on silicalite and ZSM-5 have been measured in the temperature range of 373.15--473.15K under low pressure (0---5.332kPa). All the experimental data can be represented by a generalized characteristic curve of the extended adsorption potential theory utilizing the parameter of the initial heat of adsorption, which is estimated reasonably by a new approach.展开更多
ZSM-5 zeolite microparticles (MPs) were synthesized under hydrothermal condition using a low crystal seed addition approach without template. The synthesis parameters such as the seed addition amount, the SiOJA1203 ...ZSM-5 zeolite microparticles (MPs) were synthesized under hydrothermal condition using a low crystal seed addition approach without template. The synthesis parameters such as the seed addition amount, the SiOJA1203 ratio, the aluminum source, the feeding addition method, aging, and crystallization were investigated. The structure, morphology and composition of the as-synthesized ZSM-5 zeolite MPs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), laser particle size distribution (PSD) measurements, and inductively coupled plasma-atomic emission spectrometry (ICP-AES). The SIO2/A1203 ratio of ZSM-5 zeolite MPs was in the range of 20~80. The low seed addition was beneficial to improving the crystallinity and shortening the crystallization time, and the suitable amount of seed was 0.25% (SIO2). The ZSM-5 zeolite MPs synthesized with aluminium nitrate nonahydrate used as the aluminum source exhibited a relatively high crystallinity. An appropriate aging time could eliminate the effect of feeding addition method and effectively adjust particle size. The particle size of ZSM-5 zeolite obtained at an aging time of 20 h was around 2.0 I.tm. Prolonging the aging time appropriately could also shorten the high-temperature crystallization time. The suitable aging time was 24 h, and the relative crystallinity of ZSM-5 zeolite could reach up to 99% after crystallization for 24 h at 180 ℃展开更多
Hydrophobic ZSM-5 zeolite filled polydimethylsiloxane (PDMS) composite membranes with Nylon micro-filtration membrane as the support layer were prepared to separate acetaldehyde from its aqueous solution. The compos...Hydrophobic ZSM-5 zeolite filled polydimethylsiloxane (PDMS) composite membranes with Nylon micro-filtration membrane as the support layer were prepared to separate acetaldehyde from its aqueous solution. The composite membranes were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. Their structural morphology and thermal stability were also examined. The swelling study showed that the composite membranes presented higher degree of swelling in aqueous solution of acetaldehyde than in pure water at 25℃,展开更多
Solid-state grinding is a simple and effective method to introduce guest species into the channels of microporous materials through filling.The structure and the surface acidity of the materials were obtained from BET...Solid-state grinding is a simple and effective method to introduce guest species into the channels of microporous materials through filling.The structure and the surface acidity of the materials were obtained from BET isotherms and NH3-TPD,respectively.XRD,UV-vis,UV diffuse-reflectance,and TEM were used to characterize the phases,and the morphology,respectively.The clustered layers of MgO-Al2O3phases were formed in the internal pore surface and were highly dispersed inside the channels of the ZSM-5 host.So the volume of MgO-Al2O3/ZSM-5 composite was larger than the ZSM-5 zeolite itself and some mesoporous channels appeared when Mg/Al species entered the channels.Meanwhile,new acid sites emerged in MgO-Al2O3/ZSM-5 composite and the acid amount of the sample changed.The improved Pt dispersion and the increased acid content would cause the increase of propane conversion and the modification of selectivity during the reaction.展开更多
The effects of the sequence for impregnation of metal precursors on the performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation to propene were studied in this paper.Some methods such as XRD,TPDA,BET,H2-TPR,X...The effects of the sequence for impregnation of metal precursors on the performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation to propene were studied in this paper.Some methods such as XRD,TPDA,BET,H2-TPR,XPS,ICP,TEM and hydrogen chemisorption were used to characterize the catalysts.The structure of ZSM-5 zeolite was not destroyed by the introduction of metal components.Meanwhile the different impregnation sequence of metal precursors could affect the behavior of Sn4+species entering the ZSM-5 channel,and the interaction between platinum and tin species,as well as the degree for reduction of Pt and Sn components.As a result,the prepared catalysts exhibited different reaction activity and selectivity.Compared with the co-impregnation treated catalyst,the catalysts prepared by the sequential impregnation method showed better catalytic activity in propane dehydrogenation,especially the one prepared through impregnation with tin precursor at first.Finally,a model for the effect of impregnation sequence on the distribution of Pt and Sn species in PtSnNa/ZSM-5 catalyst was proposed.展开更多
Nanocrystalline ZSM-5(with a crystal size in the range of 20—30 nm) has been synthesized in only 20 h via the crystallization of ultra-concentrated homogeneous synthesis mixtures. The influence of low water content, ...Nanocrystalline ZSM-5(with a crystal size in the range of 20—30 nm) has been synthesized in only 20 h via the crystallization of ultra-concentrated homogeneous synthesis mixtures. The influence of low water content, use of compound surfactant, a proper crystallization time and SiO_2/Al_2O_3 molar ratio on the properties of the final nanocrystalline ZSM-5 has been studied. Especially, the use of compound surfactant has influenced some properties of nano-ZSM such as the morphology, crystal size and crystallization greatly. The nano-ZSM-5 zeolite was investigated using XRD, BET, SEM, NH_3-TPD, and other techniques. The evaluation results in a 200-mL hydrogenation unit indicated that the synthesized nano-ZSM-5 had excellent catalytic performance in diesel hydrodewaxing.展开更多
In this study,various ZSM-5/MCM-41 micro/mesoporous zeolite composites have been prepared by alkalidesilication and surfactant-directed recrystallization of ZSM-5.The effects of particle size and Si/Al ratio of initia...In this study,various ZSM-5/MCM-41 micro/mesoporous zeolite composites have been prepared by alkalidesilication and surfactant-directed recrystallization of ZSM-5.The effects of particle size and Si/Al ratio of initial ZSM-5 zeolites on the structure and catalytic performance of ZSM-5/MCM-41 composites are studied.The results of XRD,TEM N_2-adsorption-desorption,NH_3-TPD and in situ FT-IR revealed that ordered hexagonal MCM-41 mesopores with 3-4 nm pore size were formed around ZSM-5 crystals,and the specific surface area and mesopore volume of composites increased with increasing the Si/Al ratio of initial ZSM-5.Catalytic cracking of n-dodecane(550℃,4 MPa) showed that the ZSM-5/MCM-41 composites obtained from the high Si/Al ratio and nano-sized initial ZSM-5 zeolites exhibited superior catalytic performance,with the improvement higher than 87%in the catalytic activities and 21%in the deactivation rate compared with untreated zeolites.This could be ascribed to their suitable pore structure,which enhanced the diffusion of reactant molecules in pores of catalysts.展开更多
ZSM-5 zeolites with similar St/Al ratio were synthesized successfully using various templates [n- butylamine (BTA), tetrapropylammonium bromide (TPABr) and no template (NT)] under hydrothermal conditions, The sa...ZSM-5 zeolites with similar St/Al ratio were synthesized successfully using various templates [n- butylamine (BTA), tetrapropylammonium bromide (TPABr) and no template (NT)] under hydrothermal conditions, The samples were characterized by XRD, SEM, Py-IR and BET surface area measurements in order to understand the template eiTects and the differences between the ZSM-5 santples. The synthesis of ZSM-5 with organic templates was relatively easier than those with inorganic templates and withnut template. SEM results revealed that ZSM-5 synthesized with different templates had different morphologies in similar particle size. Toluene disproportiortation reaction was carried out over the catalyst samples to evaluate the catalytic properties. The results have shown that large crystals which have a correspondingly small external surface showed a high para-xylene selectivity, and the amount of C9^+ and C5^+ was much less than that obtained from zeolite with small crystals.展开更多
The use of a modified ZSM-5 molecular sieve to remove thiophene from benzene was demonstrated. Adsorption equilibrium experiments were carried out in an enclosed vessel in which a known amount of zeolite was contacted...The use of a modified ZSM-5 molecular sieve to remove thiophene from benzene was demonstrated. Adsorption equilibrium experiments were carried out in an enclosed vessel in which a known amount of zeolite was contacted with 20-40 ml of benzene-thiophene solution. The solutions were analyzed by gas chromatography with flame photometric detector. Thiophene was not physically adsorbed on a single molecular layer but mainly adsorbed chemically onto the modified ZSM-5 zeolite adsorbent.展开更多
ZSM-5 zeolite was in-situ synthesized from metakaolin or s alumina sources, respectively. The ZSM-5 zeolite was characterized pinel by incorporating additional silica and by X-ray diffractometry (XRD), scanning elec...ZSM-5 zeolite was in-situ synthesized from metakaolin or s alumina sources, respectively. The ZSM-5 zeolite was characterized pinel by incorporating additional silica and by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and N2 adsorption measurement. This supported zeolite was tested on the methanol to propylene (MTP) processes. Experimental results showed that the ZSM-5 zeolite exhibited high selectivity for propylene. The yield of propylene on ZSM-5 zeolite made from metakaolin was increased by 17.73%, while that on ZSM-5 zeolite made from spinel was raised by 9.90%, compared to that achieved with the commercial ZSM-5 zeolite. The significant increase in propylene production is probably due to the distinctive morphology of the ZSM-5 zeolite, which possessed a rough external surface covered with sphere-like particles and distribution of small crystals sized at around 400--500 nm. This morphology could help to generate more crystal defects so that more active centers could be exposed to the reaction mixture. In addition, the zeolite product had a gradient pore distribution and many medium Brǒnsted acid sites, both of which might also contribute to the increased propylene production.展开更多
A new effective process to improve the utilization of industrial fluorosilicic acid of phosphate fertilizer by-product has been investigated to comprehensive application of the silicon and fluorine source. Two-step am...A new effective process to improve the utilization of industrial fluorosilicic acid of phosphate fertilizer by-product has been investigated to comprehensive application of the silicon and fluorine source. Two-step ammoniation was applied to recover high-quality silica. The recovered silica can be used to hydrothermal synthesize ZSM-5 zeolite without impurity phase contamination, which was confirmed by XRD, TG, SEM, BET and EDS characteristic techniques. It was found that with the increase of SiO_2/Al_2O_3 ratio and the extension of reaction time, the crystal type transform from the orthorhombic to the monoclinic phase. The impurity fluorine content of the recovered SiO_2 from H_2SiF_6 has great influence on the hydrothermal process for ZSM-5 crystal structure formation.Moreover, the increase of fluorine ions content in the hydrothermal process can control the crystal morphology and size of synthesized ZSM-5. Catalytic properties of synthesized HZSM-5 with different SiO_2/Al_2O_3 ratio in transalkylation of toluene and 1,2,4-trimethylbenzene show good and stable catalytic performance. The ZSM-5 synthesized with recovered silica source exhibits similar catalyst life as the performance of small particle size HZSM-5, because the ZSM-5 synthesized with the silica source from industrial hexafluorosilicic acid prefers a thin disk crystal along the b axis direction, which shortens the diffusion distance of generated products.展开更多
The hierarchically structured ZSM-5 monolith was prepared through transforming the skeletons of the macroporous silica gel into ZSM-5 by the steam-assisted conversion method. The morphology and monolithic shapes of ma...The hierarchically structured ZSM-5 monolith was prepared through transforming the skeletons of the macroporous silica gel into ZSM-5 by the steam-assisted conversion method. The morphology and monolithic shapes of macroporous silica gel were well preserved. The hierarchically structured ZSM-5 monolith exhibited the hierarchical porosity, with mesopores and macropores existing inside the macroporous silica gel, and micropores formed by the ZSM-5. The products have been characterized properly by using the XRD, SEM and N2 adsorption–desorption methods.展开更多
Methylation of benzene is an alternative low-cost route to produce xylenes, but selectivity to xylene remains low over conventional zeolitic catalysts. In this work, a combined dry-gel-conversion and steam-assisted- c...Methylation of benzene is an alternative low-cost route to produce xylenes, but selectivity to xylene remains low over conventional zeolitic catalysts. In this work, a combined dry-gel-conversion and steam-assisted- crystallization method is used to synthesize hierarchically porous zeolite ZSM-5 with varied Si/AI malar ratios. X-ray diffraction (XRD), N2 physisorption, NH3-temperature programmed desorption (TPD), scanning electronic microscopic (SEM) measurement and Fourier transform infrared (FT-IR) are employed to characterize the struc- ture and acidity of both hierarchically porous zeolites and their conventional counterparts. The method is found to be applicable to ZSM-5 with molar ratios of Si/A1 from 20 to 180. The ZSM-5 zeolites are used as catalysts for benzene methylation at 460 ℃ to investigate the effect of additional porosity and Si/A1 ratios. At low Si/AI ratios, the benzene conversions over conventional and hierarchical ZSM-5 are close, and selectivity to toluene is high over hierarchical ZSM-5. It is found that hierarchical porosity markedly enhances the utility of zeolite and the se- lectivity towards xylenes via improved mass transport at higher Si/Al ratios. Under an optimized hierarchical ZSM-5 catalvst, xvlene selectivity reaches 34.9% at a Si/AI ratio of 180.展开更多
A new route to synthesize ZSM-5 monoliths with hierarchical pore structure has been referred to in this study. The successful incorporation of the macropores and mesopores within the ZSM-5 struc- ture was achieved thr...A new route to synthesize ZSM-5 monoliths with hierarchical pore structure has been referred to in this study. The successful incorporation of the macropores and mesopores within the ZSM-5 struc- ture was achieved through transforming the skeleton of the macroporous silica gel into zeolite ZSM-5 using carbon materials as the transitional template. The ZSM-5 crystal covered part of the macroporous material, and provided micropores to the macroporous silica gel. The structure of carbon monolith was studied after dissolving the silica contained in the carbon/silica composite.展开更多
基金financial support from the National Key Technology R&D Program (2012BAE05B01) of China
文摘The objective of this study is to explore the optimum composition of Y and ZSM-5 zeolites to develop novel catalysts for obtaining lower gasoline olefins content and higher propylene yield. Five composite zeolite catalysts with varying Y zeolite/ZSM-5 zeolite ratios have been prepared in this work to investigate the synergy between the Y zeolite and ZSM-5 zeolite on the selectivity to protolytic cracking, β-scission, oligomerization, and hydrogen transfer reactions using a FCC naphtha feedstock at 480 ℃ in a confined fluidized bed reactor. Experimental results showed that the composite catalyst with a Y zeolite/ZSM-5 zeolite ratio of 1:4 had the highest protolytic cracking and β-scission ability, which was even higher than that of pure ZSM-5 catalyst. On the other hand, the catalyst with a Y zeolite/ZSM-5 zeolite ratio of 3:2 exhibited the strongest hydrogen transfer functionality while the pure Y zeolite based catalyst had the highest oligomerization ability. For all the catalysts tested, increasing conversion enhanced the selectivity to protolytic cracking and hydrogen transfer reactions but reduced the selectivity to β-scission reaction. However, no clear trend was identified for the selectivity to oligomerization when an increased conversion was experienced.
基金Project (No. 29976036) supported by the National Natural Science Foundation of China
文摘ZSM-5 zeolite was rapidly synthesized in system containing ethylenediamine from the initial gel: (5?8) Na2O: 44 EDA:Al2O3:100 SiO2:4000 H2O. The crystals were lath-shaped. The effect of pretreatment and alkalinity on crystallinity was investigated. The pretreatment of silicate source can cut down the crystallization time. Tuning the system alkalinity and controlling crystallization time can ensure forming of pure crystal.
文摘The adsorption equilibria of n-heptane, n-octane and n-nonane on silicalite and ZSM-5 have been measured in the temperature range of 373.15--473.15K under low pressure (0---5.332kPa). All the experimental data can be represented by a generalized characteristic curve of the extended adsorption potential theory utilizing the parameter of the initial heat of adsorption, which is estimated reasonably by a new approach.
基金Financial support from the Innovation Fund for Elitists of Henan Province,China(No.0221001200)the Talent Training Joint Fund of NSFC-Henan(No.U1204203)the China Postdoctoral Science Foundation(No.2012M511121)
文摘ZSM-5 zeolite microparticles (MPs) were synthesized under hydrothermal condition using a low crystal seed addition approach without template. The synthesis parameters such as the seed addition amount, the SiOJA1203 ratio, the aluminum source, the feeding addition method, aging, and crystallization were investigated. The structure, morphology and composition of the as-synthesized ZSM-5 zeolite MPs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), laser particle size distribution (PSD) measurements, and inductively coupled plasma-atomic emission spectrometry (ICP-AES). The SIO2/A1203 ratio of ZSM-5 zeolite MPs was in the range of 20~80. The low seed addition was beneficial to improving the crystallinity and shortening the crystallization time, and the suitable amount of seed was 0.25% (SIO2). The ZSM-5 zeolite MPs synthesized with aluminium nitrate nonahydrate used as the aluminum source exhibited a relatively high crystallinity. An appropriate aging time could eliminate the effect of feeding addition method and effectively adjust particle size. The particle size of ZSM-5 zeolite obtained at an aging time of 20 h was around 2.0 I.tm. Prolonging the aging time appropriately could also shorten the high-temperature crystallization time. The suitable aging time was 24 h, and the relative crystallinity of ZSM-5 zeolite could reach up to 99% after crystallization for 24 h at 180 ℃
基金Supported by Shanghai Natural Science Foundation (10ZR1432000)Kwang-Hua Fund for College of Civil Engineering,Tongji University
文摘Hydrophobic ZSM-5 zeolite filled polydimethylsiloxane (PDMS) composite membranes with Nylon micro-filtration membrane as the support layer were prepared to separate acetaldehyde from its aqueous solution. The composite membranes were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. Their structural morphology and thermal stability were also examined. The swelling study showed that the composite membranes presented higher degree of swelling in aqueous solution of acetaldehyde than in pure water at 25℃,
基金the financial supports of the National Natural Science Foundation of China(Grant No.21376051,21106017,21306023 and 51077013)the Natural Science Foundation of Jiangsu(Grant No.BK20131288)+3 种基金the Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province of China(Grant No.BA2011086)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20100092120047)the Key Program for the Scientific Research Guiding Fund of Basic Scientific Research Operation Expenditure of Southeast University(Grant No.3207043101)Instrumental Analysis Fund of Southeast University
文摘Solid-state grinding is a simple and effective method to introduce guest species into the channels of microporous materials through filling.The structure and the surface acidity of the materials were obtained from BET isotherms and NH3-TPD,respectively.XRD,UV-vis,UV diffuse-reflectance,and TEM were used to characterize the phases,and the morphology,respectively.The clustered layers of MgO-Al2O3phases were formed in the internal pore surface and were highly dispersed inside the channels of the ZSM-5 host.So the volume of MgO-Al2O3/ZSM-5 composite was larger than the ZSM-5 zeolite itself and some mesoporous channels appeared when Mg/Al species entered the channels.Meanwhile,new acid sites emerged in MgO-Al2O3/ZSM-5 composite and the acid amount of the sample changed.The improved Pt dispersion and the increased acid content would cause the increase of propane conversion and the modification of selectivity during the reaction.
基金the financial supports of the National Natural Science Foundation of China(Grant No.21376051,21106017,21306023,and 51077013)the Natural Science Foundation of Jiangsu(Grant No.BK20131288)+2 种基金the Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province of China(Grant No.BA2011086)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20100092120047)the Key Program for the Scientific Research Guiding Fund of Basic Scientific Research Operation Expenditure of Southeast University(Grant No.3207043101)
文摘The effects of the sequence for impregnation of metal precursors on the performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation to propene were studied in this paper.Some methods such as XRD,TPDA,BET,H2-TPR,XPS,ICP,TEM and hydrogen chemisorption were used to characterize the catalysts.The structure of ZSM-5 zeolite was not destroyed by the introduction of metal components.Meanwhile the different impregnation sequence of metal precursors could affect the behavior of Sn4+species entering the ZSM-5 channel,and the interaction between platinum and tin species,as well as the degree for reduction of Pt and Sn components.As a result,the prepared catalysts exhibited different reaction activity and selectivity.Compared with the co-impregnation treated catalyst,the catalysts prepared by the sequential impregnation method showed better catalytic activity in propane dehydrogenation,especially the one prepared through impregnation with tin precursor at first.Finally,a model for the effect of impregnation sequence on the distribution of Pt and Sn species in PtSnNa/ZSM-5 catalyst was proposed.
基金the National Natural Science Foundation(20473039) for the support of this work
文摘Nanocrystalline ZSM-5(with a crystal size in the range of 20—30 nm) has been synthesized in only 20 h via the crystallization of ultra-concentrated homogeneous synthesis mixtures. The influence of low water content, use of compound surfactant, a proper crystallization time and SiO_2/Al_2O_3 molar ratio on the properties of the final nanocrystalline ZSM-5 has been studied. Especially, the use of compound surfactant has influenced some properties of nano-ZSM such as the morphology, crystal size and crystallization greatly. The nano-ZSM-5 zeolite was investigated using XRD, BET, SEM, NH_3-TPD, and other techniques. The evaluation results in a 200-mL hydrogenation unit indicated that the synthesized nano-ZSM-5 had excellent catalytic performance in diesel hydrodewaxing.
基金Supported by the National Natural Science Foundation of China(U123213421306132)the Doctoral Program of Higher Education(20120032120008)
文摘In this study,various ZSM-5/MCM-41 micro/mesoporous zeolite composites have been prepared by alkalidesilication and surfactant-directed recrystallization of ZSM-5.The effects of particle size and Si/Al ratio of initial ZSM-5 zeolites on the structure and catalytic performance of ZSM-5/MCM-41 composites are studied.The results of XRD,TEM N_2-adsorption-desorption,NH_3-TPD and in situ FT-IR revealed that ordered hexagonal MCM-41 mesopores with 3-4 nm pore size were formed around ZSM-5 crystals,and the specific surface area and mesopore volume of composites increased with increasing the Si/Al ratio of initial ZSM-5.Catalytic cracking of n-dodecane(550℃,4 MPa) showed that the ZSM-5/MCM-41 composites obtained from the high Si/Al ratio and nano-sized initial ZSM-5 zeolites exhibited superior catalytic performance,with the improvement higher than 87%in the catalytic activities and 21%in the deactivation rate compared with untreated zeolites.This could be ascribed to their suitable pore structure,which enhanced the diffusion of reactant molecules in pores of catalysts.
文摘ZSM-5 zeolites with similar St/Al ratio were synthesized successfully using various templates [n- butylamine (BTA), tetrapropylammonium bromide (TPABr) and no template (NT)] under hydrothermal conditions, The samples were characterized by XRD, SEM, Py-IR and BET surface area measurements in order to understand the template eiTects and the differences between the ZSM-5 santples. The synthesis of ZSM-5 with organic templates was relatively easier than those with inorganic templates and withnut template. SEM results revealed that ZSM-5 synthesized with different templates had different morphologies in similar particle size. Toluene disproportiortation reaction was carried out over the catalyst samples to evaluate the catalytic properties. The results have shown that large crystals which have a correspondingly small external surface showed a high para-xylene selectivity, and the amount of C9^+ and C5^+ was much less than that obtained from zeolite with small crystals.
基金Supported by the Post-Doctorate Science Foundation of China.
文摘The use of a modified ZSM-5 molecular sieve to remove thiophene from benzene was demonstrated. Adsorption equilibrium experiments were carried out in an enclosed vessel in which a known amount of zeolite was contacted with 20-40 ml of benzene-thiophene solution. The solutions were analyzed by gas chromatography with flame photometric detector. Thiophene was not physically adsorbed on a single molecular layer but mainly adsorbed chemically onto the modified ZSM-5 zeolite adsorbent.
基金the financial support from National Natural Science Foundation of China(20776124 and 20736011)
文摘ZSM-5 zeolite was in-situ synthesized from metakaolin or s alumina sources, respectively. The ZSM-5 zeolite was characterized pinel by incorporating additional silica and by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and N2 adsorption measurement. This supported zeolite was tested on the methanol to propylene (MTP) processes. Experimental results showed that the ZSM-5 zeolite exhibited high selectivity for propylene. The yield of propylene on ZSM-5 zeolite made from metakaolin was increased by 17.73%, while that on ZSM-5 zeolite made from spinel was raised by 9.90%, compared to that achieved with the commercial ZSM-5 zeolite. The significant increase in propylene production is probably due to the distinctive morphology of the ZSM-5 zeolite, which possessed a rough external surface covered with sphere-like particles and distribution of small crystals sized at around 400--500 nm. This morphology could help to generate more crystal defects so that more active centers could be exposed to the reaction mixture. In addition, the zeolite product had a gradient pore distribution and many medium Brǒnsted acid sites, both of which might also contribute to the increased propylene production.
基金Supported by the National Natural Science Foundation of China(21306143)the Educational Commission of Hubei Province of China(D20161503)the Hubei Province Phosphorus Resource and Ethylene Project Downstream Exploitation Collaborative Innovation Center
文摘A new effective process to improve the utilization of industrial fluorosilicic acid of phosphate fertilizer by-product has been investigated to comprehensive application of the silicon and fluorine source. Two-step ammoniation was applied to recover high-quality silica. The recovered silica can be used to hydrothermal synthesize ZSM-5 zeolite without impurity phase contamination, which was confirmed by XRD, TG, SEM, BET and EDS characteristic techniques. It was found that with the increase of SiO_2/Al_2O_3 ratio and the extension of reaction time, the crystal type transform from the orthorhombic to the monoclinic phase. The impurity fluorine content of the recovered SiO_2 from H_2SiF_6 has great influence on the hydrothermal process for ZSM-5 crystal structure formation.Moreover, the increase of fluorine ions content in the hydrothermal process can control the crystal morphology and size of synthesized ZSM-5. Catalytic properties of synthesized HZSM-5 with different SiO_2/Al_2O_3 ratio in transalkylation of toluene and 1,2,4-trimethylbenzene show good and stable catalytic performance. The ZSM-5 synthesized with recovered silica source exhibits similar catalyst life as the performance of small particle size HZSM-5, because the ZSM-5 synthesized with the silica source from industrial hexafluorosilicic acid prefers a thin disk crystal along the b axis direction, which shortens the diffusion distance of generated products.
文摘The hierarchically structured ZSM-5 monolith was prepared through transforming the skeletons of the macroporous silica gel into ZSM-5 by the steam-assisted conversion method. The morphology and monolithic shapes of macroporous silica gel were well preserved. The hierarchically structured ZSM-5 monolith exhibited the hierarchical porosity, with mesopores and macropores existing inside the macroporous silica gel, and micropores formed by the ZSM-5. The products have been characterized properly by using the XRD, SEM and N2 adsorption–desorption methods.
基金Supported by the National Natural Science Foundation of China(21006024)the CNPC Innovation Foundation(2011D-5006-0507)+2 种基金the Shanghai Pujiang Program(11PJ1402600)the New Century Excellent Talents in University(NCET-11-0644)the Fundamental Research Funds for the Central Universities(WB1213004-1)
文摘Methylation of benzene is an alternative low-cost route to produce xylenes, but selectivity to xylene remains low over conventional zeolitic catalysts. In this work, a combined dry-gel-conversion and steam-assisted- crystallization method is used to synthesize hierarchically porous zeolite ZSM-5 with varied Si/AI malar ratios. X-ray diffraction (XRD), N2 physisorption, NH3-temperature programmed desorption (TPD), scanning electronic microscopic (SEM) measurement and Fourier transform infrared (FT-IR) are employed to characterize the struc- ture and acidity of both hierarchically porous zeolites and their conventional counterparts. The method is found to be applicable to ZSM-5 with molar ratios of Si/A1 from 20 to 180. The ZSM-5 zeolites are used as catalysts for benzene methylation at 460 ℃ to investigate the effect of additional porosity and Si/A1 ratios. At low Si/AI ratios, the benzene conversions over conventional and hierarchical ZSM-5 are close, and selectivity to toluene is high over hierarchical ZSM-5. It is found that hierarchical porosity markedly enhances the utility of zeolite and the se- lectivity towards xylenes via improved mass transport at higher Si/Al ratios. Under an optimized hierarchical ZSM-5 catalvst, xvlene selectivity reaches 34.9% at a Si/AI ratio of 180.
文摘A new route to synthesize ZSM-5 monoliths with hierarchical pore structure has been referred to in this study. The successful incorporation of the macropores and mesopores within the ZSM-5 struc- ture was achieved through transforming the skeleton of the macroporous silica gel into zeolite ZSM-5 using carbon materials as the transitional template. The ZSM-5 crystal covered part of the macroporous material, and provided micropores to the macroporous silica gel. The structure of carbon monolith was studied after dissolving the silica contained in the carbon/silica composite.