This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure...This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure and polymer properties. The spherical support with the chemical composition of CH3CH2 OMg OCH(CH2Cl)2 has been synthesized from a new dispersion system and is used as the supporting material to prepare Ziegler-Natta catalyst. The XRD analysis indicates that the catalyst is fully activated with δ-Mg Cl2 in the active catalyst. The far-IR spectrometric results confirm again the presence of δ-Mg Cl2 in the active catalyst. Textural property of the active catalyst exhibits high surface area coupled with high porosity. The high activity in propylene polymerization is mainly ascribed to the full activation and the porous structure of the catalyst. Scanning electron microscopy/energy dispersive spectrometer mapping results indicate a uniform titanium distribution throughout the catalyst particles. Particle size analysis shows that the catalyst has a narrow particle size distribution. The perfect spherical shape, uniform titanium distribution and narrow particle size distribution of the catalyst confirm the advantage of polymer particles production with less fines. The solid state 13 C NMR and mid-IR spectroscopic analyses indicate that there exists strong complexation between diisobutyl phthalate and Mg Cl2, which leads to the high isotacticity of polypropylene.展开更多
基金the financial support by the National Natural Science Foundation of China (No. 20973022 and No. 11472048)
文摘This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure and polymer properties. The spherical support with the chemical composition of CH3CH2 OMg OCH(CH2Cl)2 has been synthesized from a new dispersion system and is used as the supporting material to prepare Ziegler-Natta catalyst. The XRD analysis indicates that the catalyst is fully activated with δ-Mg Cl2 in the active catalyst. The far-IR spectrometric results confirm again the presence of δ-Mg Cl2 in the active catalyst. Textural property of the active catalyst exhibits high surface area coupled with high porosity. The high activity in propylene polymerization is mainly ascribed to the full activation and the porous structure of the catalyst. Scanning electron microscopy/energy dispersive spectrometer mapping results indicate a uniform titanium distribution throughout the catalyst particles. Particle size analysis shows that the catalyst has a narrow particle size distribution. The perfect spherical shape, uniform titanium distribution and narrow particle size distribution of the catalyst confirm the advantage of polymer particles production with less fines. The solid state 13 C NMR and mid-IR spectroscopic analyses indicate that there exists strong complexation between diisobutyl phthalate and Mg Cl2, which leads to the high isotacticity of polypropylene.