Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explo...Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.展开更多
In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower ...In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower than 1 200℃).The characteristics of synthesized phosphors were determined using scanning electron microscopy(SEM),X-ray diffraction(XRD),and fluorescence spectroscopy.During SPS,the lattice structure of YAG was maintained by the added Ce^(3+) and Sc^(3+).The emission wavelength of YAG:Ce^(3+) prepared from SPS(425-700 nm) was wider compared to that of YAG:Ce^(3+) prepared from high-temperature solid-state reaction(HSSR)(500-700 nm).The incorporation of low-dose Sc^(3+) in YAG:Ce^(3+) moved the emission peak towards the short wavelength.展开更多
Discrete element method (DEM) is used in the present paper to simulate the microstructural evolution of a planar layer of copper particles during sintering. Formation of agglomerates and the effect of their rearrang...Discrete element method (DEM) is used in the present paper to simulate the microstructural evolution of a planar layer of copper particles during sintering. Formation of agglomerates and the effect of their rearrangement on densification are mainly focused on. Comparing to the existing experimental observations, we find that agglomerate can form spontaneously in sintering and its rearrangement could accelerate the densification of compacts. Snapshots of numerical simulations agree qualitatively well with experimental observations. The method could be readily extended to investigate the effect of agglomerate on sintering in a three- dimensional model, which should be very useful for understanding the evolution of microstructure of sintering systems.展开更多
Discrete element method (DEM) is used to study the factors affecting agglomeration in three-dimensional copper particle systems during solid-state sintering. A new parameter is proposed to characterize agglomeration...Discrete element method (DEM) is used to study the factors affecting agglomeration in three-dimensional copper particle systems during solid-state sintering. A new parameter is proposed to characterize agglomeration. The effects of a series of factors are studied, including particle size, size distribution, inter-particle tangential viscosity, tem- perature, initial density and initial distribution of particles on agglomeration. We find that the systems with smaller particles, broader particle size distribution, smaller viscos- ity, higher sintering temperature and smaller initial density have stronger particle agglomeration and different distribu- tions of particles induce different agglomerations. This study should be very useful for understanding the phenomenon of agglomeration and the micro-structural evolution during sin- tering and guiding sintering routes to avoid detrimental ag- glomeration.展开更多
Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of ca...Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of cathodeILLZO.However,its application is still hindered by the interlayer co-diffusion with the cathode and high sintering temperature(>1200℃).In this work,a new garnet-type composite solid-state electrolyte(SSE) Li_(6.54)La_(2.96)Ba_(0.04)Zr_(1.5)Nb_(0.5)O_(12)-LiCoO_(2)(LLBZNO-LCO) is firstly proposed to improve the chemical stability and electrochemical properties of garnet with high-temperature processing.Small doses of LCO(3%) can significantly decrease the LCOISSE interface resistance from 121.2 to 10.1 Ω cm~2,while the sintering temperature of garnet-type LLBZNO decreases from 1230 to 1000℃.The all-solid-state battery based on the sintered LLBZNO-LCO SSE exhibits excellent cycling stability.Our approach achieves an enhanced LCOISSE interface and an improved sintering activity of garnet SSE,which provides a new strategy for optimizing the comprehensive performance of garnet SSE.展开更多
Recent studies have shown that many challenges encountered in conventional single crystal growth methods, including high production costs, can be overcome by using the solid-state single-crystal growth(SSCG) approach,...Recent studies have shown that many challenges encountered in conventional single crystal growth methods, including high production costs, can be overcome by using the solid-state single-crystal growth(SSCG) approach, which has been recognized as a simple and cost-effective alternative for obtaining single crystals. In this work, YAlO(YAG) and Nd-doped YAG(Nd:YAG) single crystals were grown via the SSCG method using spark plasma sintering(SPS). The growth of single crystals was initiated at the surface of(110) YAG single-crystal seeds embedded inside YAG and Nd:YAG powder beds, and this growth continued as the surrounding polycrystalline matrix was converted into a single crystal. The application of external pressure during the SPS process has been found beneficial for reducing the porosity of the grown single crystals. Moreover, high Nddoping levels had a positive effect on the conversion kinetics,with a growth rate of almost 50 μm/h, which increased the driving force for single-crystal growth through the solute drag effect. EDS elemental mapping and line scans confirmed the compositional uniformity of the grown single crystals, while EBSD images verified their crystallization in the(110) direction. The obtained results confirm the strong potential of the SSCG technique coupled with SPS for the growth of undoped and highly doped YAG single crystals with excellent quality.展开更多
The sphene-type solid electrolyte with high ionic conductivity has been designed for solid-state lithium metal battery.However,the practical applications of solid electrolytes are still suffered by the low relative de...The sphene-type solid electrolyte with high ionic conductivity has been designed for solid-state lithium metal battery.However,the practical applications of solid electrolytes are still suffered by the low relative density and long sintering time of tens of hous with large energy consumption.Here,we introduced the spark plasma sintering technology for fabricating the sphene-type Li1.125Ta0.875Zr0.125SiO5 solid electrolyte.The dense electrolyte pellet with high relative density of ca.97.4% and ionic conductivity of ca.1.44×10^-5S/cm at 30℃ can be obtained by spark plasma sintering process within the extremely short time of only ca.0.1h.Also the solid electrolyte provides stable electrochemical window of ca.6.0V(vs.Li^+/Li)and high electrochemical interface stability toward Li metal anodc.With the enhanced interfacial contacts between electrodes and electrolyte pellet by the in-situ formed polymer electrolyte,the solid-state lithium metal battery with LiFePO4 cathode can deliver the initial discharge capacity of ca.154mA·h/g at 0.1C and the reversible capacity of ca.132mA·h/g after 70 cycles with high Coulombic efficienty of 99.5% at 55℃.Therefore,this study demonstrates a rapid and energy efficient sintering strategy for fabricating the solid electrolyte with dense structure and high ionic conductivity that can be practically applied in solid-state lithium metal batteries with high energy densities and safeties.展开更多
The consolidation recycled AZ80 billets were successfully fabricated through the cold press and hot press sintering of the AZ80 metal chips.The consolidation recycled billets sintered at 350℃present the comparable co...The consolidation recycled AZ80 billets were successfully fabricated through the cold press and hot press sintering of the AZ80 metal chips.The consolidation recycled billets sintered at 350℃present the comparable compressive properties and inferior tensile properties compared with the initial cast billets.The defects in the consolidation recycled billet were inclined to propagate along the bond interface between the metal chips during tension,which resulted in the inferior tensile properties of the recycled billets.The recycled billets were then subjected to the integrated extrusion-shear(ES) process.The homogeneous finer dynamic recrystallization grains with an average grain size of 6 μm can be obtained in the shear deformation zone and extrusion sizing zone through integrated ES process at 300℃with an extrusion velocity of 0.6 mm/s.The recycled billets after integrated ES forming process present rival tensile properties compared with the initial cast billets after integrated ES forming with the same extrusion parameters,which can be ascribed to that the integrated ES forming can nearly eliminate the defects through the severe compressive and shear strain.The solid-state recycling process through hot press sintering and subsequent integrated ES process can fabricate the consolidation recycled AZ80 rod,which demonstrates the comparable tensile properties with the cast-extrusion rod.展开更多
Solid-state batteries(SSBs)will potentially offer increased energy density and,more importantly,improved safety for next generation lithium-ion(Li-ion)batteries.One enabling technology is solid-state composite cathode...Solid-state batteries(SSBs)will potentially offer increased energy density and,more importantly,improved safety for next generation lithium-ion(Li-ion)batteries.One enabling technology is solid-state composite cathodes with high operating voltage and area capacity.Current composite cathode manufacturing technologies,however,suffer from large interfacial resistance and low active mass loading that with excessive amounts of polymer electrolytes and conductive additives.Here,we report a liquidphase sintering technology that offers mixed ionic-electronic interphases and free-standing electrode architecture design,which eventually contribute to high area capacity.A small amount(~4 wt.%)of lithium hydroxide(LiOH)and boric acid(H_(3)BO_(3))with low melting point are utilized as sintering additives that infiltrate into single-crystal Ni-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)(NMC811)particles at a moderately elevated temperature(~350℃)in a liquid state,which not only enable intimate physical contact but also promote the densification process.In addition,the liquid-phase additives react and transform to ionic-conductive lithium boron oxide,together with the indium tin oxide(ITO)nanoparticle coating,mixed ionic-electronic interphases of composite cathode are successfully fabricated.Furthermore,the liquid-phase sintering performed at high-temperature(~800℃)also enables the fabrication of highly dense and thick composite cathodes with a novel free-standing architecture.The promising performance characteristics of such composite cathodes,for example,delivering an area capacity above 8 mAh·cm^(−2) within a wide voltage window up to 4.4 V,open new opportunities for SSBs with a high energy density of 500 Wh·kg^(−1) for safer portable electronic and electrical transport.展开更多
High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized b...High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized by an improved solid-state reaction method at ambient temperature,and were applied to the fabrication of SOFC electrolytes.YSZ nano-powders show average grain sizes of ^(2)0 nm and high dispersibility,which is comparable with or even better than some other chemical methods.Benefitting from their high reactivity,dense YSZ electrolytes(relative density of 97.9%) can be obtained at a relatively low sintering temperature of 1400℃.The optimized electrical conductivity reaches up to a high value of0.034 S/cm at 800 0C in air.The anode supported single cell with the construction of Ni-YSZ/YSZ/Sm_(0.2)Ce_(0.8)O_(2-δ)(SDC)/La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF) exhibits the peak power density of 0.827 W/cm^(2) at800℃ while taking wet H_(2) as fuels and ambient air as oxidants.展开更多
Pure Ca-SiAlON:Eu2+ was synthesized by microwave sintering method at a relatively low temperature of 1550℃.Photoluminescence intensity of the resultant phosphor was higher than those of the samples synthesized by con...Pure Ca-SiAlON:Eu2+ was synthesized by microwave sintering method at a relatively low temperature of 1550℃.Photoluminescence intensity of the resultant phosphor was higher than those of the samples synthesized by conventional gas-pressure sintering technique at 1750℃.When it was excited at 450 nm,the as-prepared yellow Ca-SiAlON:Eu2+ sample had an external quantum efficiency of 42%,comparable to the sample synthesized at 1750℃ under 0.5 MPaN2 gas pressure by the GPS method reported in reference.The experimental results demonstrated that the microwave sintering method was also an interesting approach for synthesizing nitride phosphors,which promises lower firing temperature than those by carbothermal reduction and nitridation (CRN) methods,higher heating rate and shorter duration time compared with those by gas-pressure sintering.展开更多
The cold sintering process(CSP)and Bi_(2)O_(3)-activated liquid-phase sintering(LPS)are combined to densify Mg-doped NASICON(Na_(3.256)Mg_(0.128)Zr_(1.872)Si_(2)PO_(12))to achieve high densities and conductivities at ...The cold sintering process(CSP)and Bi_(2)O_(3)-activated liquid-phase sintering(LPS)are combined to densify Mg-doped NASICON(Na_(3.256)Mg_(0.128)Zr_(1.872)Si_(2)PO_(12))to achieve high densities and conductivities at reduced temperatures.As an example,a cold-sintered specimen with the addition of 1.1wt%Bi_(2)O_(3)sintering additive achieved a high conductivity of 0.91 mS/cm(with~96%relative density)after annealing at 1000℃;this conductivity is>70%higher than that of a cold-sintered specimen without adding the Bi_(2)O_(3)sintering additive,and it is>700%of the conductivity of a dry-pressed counterpart with the same amount of Bi_(2)O_(3)added,all of which are subjected to the same heating profile.The highest conductivity achieved in this study via combining CSP and Bi_(2)O_(3)-activated LSP is>1.5 mS/cm.This study suggests an opportunity to combine the new CSP with the traditional LPS to sinter solid electrolytes to achieve high densities and conductivities at reduced temperatures.This combined CSP-LPS approach can be extended to a broad range of other materials to fabricate the“thermally fragile”solid electrolytes or solid-state battery systems,where reducing the processing temperature is often desirable.展开更多
In traditional ceramic processing techniques,high sintering temperature is necessary to achieve fully dense microstructures.But it can cause various problems including warpage,overfiring,element evaporation,and polymo...In traditional ceramic processing techniques,high sintering temperature is necessary to achieve fully dense microstructures.But it can cause various problems including warpage,overfiring,element evaporation,and polymorphic transformation.To overcome these drawbacks,a novel processing technique called“tcold sintering process(CSP)”has been explored by Randall et al.CSP enables densification of ceramics at ultra-low temperature(<300℃)with the assistance o f transient aqueous solution and applied pressure.In CSP,the processing conditions including aqueous solution,pressure,temperature,and sintering duration play critical roles in the densification and properties of ceramics,which will be reviewed.The review will also include the applications of CSP in solid-state rechargeable batteries.Finally,the perspectives about CSP is proposed.展开更多
The K_xNa_((1-x))NbO_3(x=0.45, 0.46, 0.47, 0.48, 0.49, 0.50) lead-free piezoelectric ceramics was fabricated by conventional solid-state sintering method. It was found that the ratio of alkaline metal would affect the...The K_xNa_((1-x))NbO_3(x=0.45, 0.46, 0.47, 0.48, 0.49, 0.50) lead-free piezoelectric ceramics was fabricated by conventional solid-state sintering method. It was found that the ratio of alkaline metal would affect the microstructure, bulk density, and optimum sintering temperatures of ceramics. Meanwhile, the electrical properties were also influenced by modulating the K/Na ratio, exhibiting corresponding composition-dependent properties. The optimum electrical properties of K_xNa_((1-x))NbO_3 such as piezoelectric constant d_(33) = 115 pC/N, mechanical quality factor Q_m = 20, Curie temperature Tc = 365 ~oC, ε_(33)~T/ε_0= 588.1, dielectric loss tan δ = 0.024, bulk density(ρ) = 3.08 g/cm^3, remnant polarization(P_r) = 8.87 μC/cm^2 and coercive field(Ec) = 13.79 kV/cm were obtained at x = 0.46.展开更多
Effects of agglomerates on the densification behavior and microstructural evolution during solid-state sintering of a cube of copper particles have been studied with discrete element method (DEM).It is found that the ...Effects of agglomerates on the densification behavior and microstructural evolution during solid-state sintering of a cube of copper particles have been studied with discrete element method (DEM).It is found that the densification of the sintering system decreases as the volume fraction of agglomerates increases.At a given volume fraction of agglomerates,the smaller the size of agglomerates,the poorer the densification and more inhomogeneous the compact is.The morphology and distribution of agglomerates have negligible effects on the densification,especially for the case with a low volume fraction of agglomerates.Agglomerates with a smaller average coordination number would have more restriction on the densification of sintering bodies.To our best knowledge,it is the first time to study the effect of agglomerates on sintering behavior using DEM.This study should be useful for further investigations of the effect of various inhomogeneities of microstructure on the complex sintering process by DEM.展开更多
The effect of sintering temperature on thermoelectric properties of CdO ceramics was investigated by solid-state reaction method within the temperature range of 700-1000℃.With the increase of sintering temperature,bo...The effect of sintering temperature on thermoelectric properties of CdO ceramics was investigated by solid-state reaction method within the temperature range of 700-1000℃.With the increase of sintering temperature,both the grain size and the carrier concentration of these samples increased,while the Seebeck coefficient decreased.The highest dimensionless figure of merit ZT,0.34,was obtained at 1023 K for the sample sintered at 800℃,suggesting the potential application of CdO ceramics in thermoelectric(TE)devices.展开更多
The availability using oxygen-rich powders to prepare ultrafine Ti(C,N)-based cermets was investigated. The deoxidation process, denitrification phenomenon and the effect of deoxidation on microstructure and mechanica...The availability using oxygen-rich powders to prepare ultrafine Ti(C,N)-based cermets was investigated. The deoxidation process, denitrification phenomenon and the effect of deoxidation on microstructure and mechanical properties of sintered samples were discussed, respectively. The results show that oxygen in the samples prepared even with high oxygen contained in starting powders can be almost completely cleaned away through suitable sintering process. The ultrafine oxygen-rich powders have a significant effect on microstructure, which promotes the formation of white core phase. A ultrafine Ti(C,N)-based cermet with mean particle size of 0. 30 μm, uniform microstructure and excellent mechanical properties is successfully prepared. It is also found that there exists severe denitrification phenomenon in the preparation process of ultrafine Ti(C,N)-based cermet.展开更多
基金funded by the National Natural Science Foundation of China(Nos.51672310,51272288,51972344)。
文摘Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.
基金Funded by the Primary Research and Development Plan of Jiangsu Province(No.BE2016175)。
文摘In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower than 1 200℃).The characteristics of synthesized phosphors were determined using scanning electron microscopy(SEM),X-ray diffraction(XRD),and fluorescence spectroscopy.During SPS,the lattice structure of YAG was maintained by the added Ce^(3+) and Sc^(3+).The emission wavelength of YAG:Ce^(3+) prepared from SPS(425-700 nm) was wider compared to that of YAG:Ce^(3+) prepared from high-temperature solid-state reaction(HSSR)(500-700 nm).The incorporation of low-dose Sc^(3+) in YAG:Ce^(3+) moved the emission peak towards the short wavelength.
基金supported by the National Natural Science Foundation of China (10972220, 11125211 and 11021262)973 Project(2012CB937500)
文摘Discrete element method (DEM) is used in the present paper to simulate the microstructural evolution of a planar layer of copper particles during sintering. Formation of agglomerates and the effect of their rearrangement on densification are mainly focused on. Comparing to the existing experimental observations, we find that agglomerate can form spontaneously in sintering and its rearrangement could accelerate the densification of compacts. Snapshots of numerical simulations agree qualitatively well with experimental observations. The method could be readily extended to investigate the effect of agglomerate on sintering in a three- dimensional model, which should be very useful for understanding the evolution of microstructure of sintering systems.
基金supported by the National Natural Science Foundation of China (10972220,11125211 and 11021262)973 Project(2012CB937500)
文摘Discrete element method (DEM) is used to study the factors affecting agglomeration in three-dimensional copper particle systems during solid-state sintering. A new parameter is proposed to characterize agglomeration. The effects of a series of factors are studied, including particle size, size distribution, inter-particle tangential viscosity, tem- perature, initial density and initial distribution of particles on agglomeration. We find that the systems with smaller particles, broader particle size distribution, smaller viscos- ity, higher sintering temperature and smaller initial density have stronger particle agglomeration and different distribu- tions of particles induce different agglomerations. This study should be very useful for understanding the phenomenon of agglomeration and the micro-structural evolution during sin- tering and guiding sintering routes to avoid detrimental ag- glomeration.
基金financially supported by the National Natural Science Foundation of China (52102323, 51972298)the China Postdoctoral Science Foundation (2021M703055)+1 种基金the National Key R&D Program of China (2021YFB4001401)the Key Research Program of the Chinese Academy of Sciences (ZDRWCN-2021-3-1)。
文摘Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of cathodeILLZO.However,its application is still hindered by the interlayer co-diffusion with the cathode and high sintering temperature(>1200℃).In this work,a new garnet-type composite solid-state electrolyte(SSE) Li_(6.54)La_(2.96)Ba_(0.04)Zr_(1.5)Nb_(0.5)O_(12)-LiCoO_(2)(LLBZNO-LCO) is firstly proposed to improve the chemical stability and electrochemical properties of garnet with high-temperature processing.Small doses of LCO(3%) can significantly decrease the LCOISSE interface resistance from 121.2 to 10.1 Ω cm~2,while the sintering temperature of garnet-type LLBZNO decreases from 1230 to 1000℃.The all-solid-state battery based on the sintered LLBZNO-LCO SSE exhibits excellent cycling stability.Our approach achieves an enhanced LCOISSE interface and an improved sintering activity of garnet SSE,which provides a new strategy for optimizing the comprehensive performance of garnet SSE.
基金the NSF grant (No.1554094) for supporting the research。
文摘Recent studies have shown that many challenges encountered in conventional single crystal growth methods, including high production costs, can be overcome by using the solid-state single-crystal growth(SSCG) approach, which has been recognized as a simple and cost-effective alternative for obtaining single crystals. In this work, YAlO(YAG) and Nd-doped YAG(Nd:YAG) single crystals were grown via the SSCG method using spark plasma sintering(SPS). The growth of single crystals was initiated at the surface of(110) YAG single-crystal seeds embedded inside YAG and Nd:YAG powder beds, and this growth continued as the surrounding polycrystalline matrix was converted into a single crystal. The application of external pressure during the SPS process has been found beneficial for reducing the porosity of the grown single crystals. Moreover, high Nddoping levels had a positive effect on the conversion kinetics,with a growth rate of almost 50 μm/h, which increased the driving force for single-crystal growth through the solute drag effect. EDS elemental mapping and line scans confirmed the compositional uniformity of the grown single crystals, while EBSD images verified their crystallization in the(110) direction. The obtained results confirm the strong potential of the SSCG technique coupled with SPS for the growth of undoped and highly doped YAG single crystals with excellent quality.
基金the Natural Science Foundation of Beijing,China(Nos.KZ20190005002,JQ19003,L182009)the National Natural Science Foundation of China(Nos.51622202,21974007)+1 种基金the National Key R&D Program of China(No.2018YFB0104300)the Project of Youth Talent Plan of Beijing Municipal Education Commission,China(No.CIT&TCD201804013)。
文摘The sphene-type solid electrolyte with high ionic conductivity has been designed for solid-state lithium metal battery.However,the practical applications of solid electrolytes are still suffered by the low relative density and long sintering time of tens of hous with large energy consumption.Here,we introduced the spark plasma sintering technology for fabricating the sphene-type Li1.125Ta0.875Zr0.125SiO5 solid electrolyte.The dense electrolyte pellet with high relative density of ca.97.4% and ionic conductivity of ca.1.44×10^-5S/cm at 30℃ can be obtained by spark plasma sintering process within the extremely short time of only ca.0.1h.Also the solid electrolyte provides stable electrochemical window of ca.6.0V(vs.Li^+/Li)and high electrochemical interface stability toward Li metal anodc.With the enhanced interfacial contacts between electrodes and electrolyte pellet by the in-situ formed polymer electrolyte,the solid-state lithium metal battery with LiFePO4 cathode can deliver the initial discharge capacity of ca.154mA·h/g at 0.1C and the reversible capacity of ca.132mA·h/g after 70 cycles with high Coulombic efficienty of 99.5% at 55℃.Therefore,this study demonstrates a rapid and energy efficient sintering strategy for fabricating the solid electrolyte with dense structure and high ionic conductivity that can be practically applied in solid-state lithium metal batteries with high energy densities and safeties.
基金financially supported by the National Natural Science Foundation of China (No. 51875127).
文摘The consolidation recycled AZ80 billets were successfully fabricated through the cold press and hot press sintering of the AZ80 metal chips.The consolidation recycled billets sintered at 350℃present the comparable compressive properties and inferior tensile properties compared with the initial cast billets.The defects in the consolidation recycled billet were inclined to propagate along the bond interface between the metal chips during tension,which resulted in the inferior tensile properties of the recycled billets.The recycled billets were then subjected to the integrated extrusion-shear(ES) process.The homogeneous finer dynamic recrystallization grains with an average grain size of 6 μm can be obtained in the shear deformation zone and extrusion sizing zone through integrated ES process at 300℃with an extrusion velocity of 0.6 mm/s.The recycled billets after integrated ES forming process present rival tensile properties compared with the initial cast billets after integrated ES forming with the same extrusion parameters,which can be ascribed to that the integrated ES forming can nearly eliminate the defects through the severe compressive and shear strain.The solid-state recycling process through hot press sintering and subsequent integrated ES process can fabricate the consolidation recycled AZ80 rod,which demonstrates the comparable tensile properties with the cast-extrusion rod.
基金supported by Natural Science Foundation of Jiangsu Province(No.BK20200800)the National Natural Science Foundation of China(Nos.51902165,12004145,52072323,and 52122211)+2 种基金Natural Science Foundation of Jiangxi Province(Nos.20192ACBL2004 and 20212BAB214032)Nanjing Science&Technology Innovation Project for Personnel Studying AbroadPart of the calculations were supported by the Center for Computational Science and Engineering at Southern University of Science and Technology,and high-performance computing platform of Jinggangshan University.
文摘Solid-state batteries(SSBs)will potentially offer increased energy density and,more importantly,improved safety for next generation lithium-ion(Li-ion)batteries.One enabling technology is solid-state composite cathodes with high operating voltage and area capacity.Current composite cathode manufacturing technologies,however,suffer from large interfacial resistance and low active mass loading that with excessive amounts of polymer electrolytes and conductive additives.Here,we report a liquidphase sintering technology that offers mixed ionic-electronic interphases and free-standing electrode architecture design,which eventually contribute to high area capacity.A small amount(~4 wt.%)of lithium hydroxide(LiOH)and boric acid(H_(3)BO_(3))with low melting point are utilized as sintering additives that infiltrate into single-crystal Ni-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)(NMC811)particles at a moderately elevated temperature(~350℃)in a liquid state,which not only enable intimate physical contact but also promote the densification process.In addition,the liquid-phase additives react and transform to ionic-conductive lithium boron oxide,together with the indium tin oxide(ITO)nanoparticle coating,mixed ionic-electronic interphases of composite cathode are successfully fabricated.Furthermore,the liquid-phase sintering performed at high-temperature(~800℃)also enables the fabrication of highly dense and thick composite cathodes with a novel free-standing architecture.The promising performance characteristics of such composite cathodes,for example,delivering an area capacity above 8 mAh·cm^(−2) within a wide voltage window up to 4.4 V,open new opportunities for SSBs with a high energy density of 500 Wh·kg^(−1) for safer portable electronic and electrical transport.
基金supported by the Natural Science Foundation of Shandong Province (ZR2020KE033,ZR2020ME051,ZR2019BEM013,ZR2021ME253)the Shandong Science and Technology Program (2021TSGC1122)+1 种基金the Shandong Postdoctoral Innovation Foundation (201903069)the Zibo Key Research and Development Project (2021SNPT0004,2021SNCG0076)。
文摘High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized by an improved solid-state reaction method at ambient temperature,and were applied to the fabrication of SOFC electrolytes.YSZ nano-powders show average grain sizes of ^(2)0 nm and high dispersibility,which is comparable with or even better than some other chemical methods.Benefitting from their high reactivity,dense YSZ electrolytes(relative density of 97.9%) can be obtained at a relatively low sintering temperature of 1400℃.The optimized electrical conductivity reaches up to a high value of0.034 S/cm at 800 0C in air.The anode supported single cell with the construction of Ni-YSZ/YSZ/Sm_(0.2)Ce_(0.8)O_(2-δ)(SDC)/La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF) exhibits the peak power density of 0.827 W/cm^(2) at800℃ while taking wet H_(2) as fuels and ambient air as oxidants.
基金supported by the National Natural Science Foundation of China(51102252 and 51272259)the Special Foundation for Young Scientists of Zhejiang Province(R12E020005)
文摘Pure Ca-SiAlON:Eu2+ was synthesized by microwave sintering method at a relatively low temperature of 1550℃.Photoluminescence intensity of the resultant phosphor was higher than those of the samples synthesized by conventional gas-pressure sintering technique at 1750℃.When it was excited at 450 nm,the as-prepared yellow Ca-SiAlON:Eu2+ sample had an external quantum efficiency of 42%,comparable to the sample synthesized at 1750℃ under 0.5 MPaN2 gas pressure by the GPS method reported in reference.The experimental results demonstrated that the microwave sintering method was also an interesting approach for synthesizing nitride phosphors,which promises lower firing temperature than those by carbothermal reduction and nitridation (CRN) methods,higher heating rate and shorter duration time compared with those by gas-pressure sintering.
基金acknowledge partial support by a Vannevar Bush Faculty Fellowship sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through grant N00014-16-1-2569.
文摘The cold sintering process(CSP)and Bi_(2)O_(3)-activated liquid-phase sintering(LPS)are combined to densify Mg-doped NASICON(Na_(3.256)Mg_(0.128)Zr_(1.872)Si_(2)PO_(12))to achieve high densities and conductivities at reduced temperatures.As an example,a cold-sintered specimen with the addition of 1.1wt%Bi_(2)O_(3)sintering additive achieved a high conductivity of 0.91 mS/cm(with~96%relative density)after annealing at 1000℃;this conductivity is>70%higher than that of a cold-sintered specimen without adding the Bi_(2)O_(3)sintering additive,and it is>700%of the conductivity of a dry-pressed counterpart with the same amount of Bi_(2)O_(3)added,all of which are subjected to the same heating profile.The highest conductivity achieved in this study via combining CSP and Bi_(2)O_(3)-activated LSP is>1.5 mS/cm.This study suggests an opportunity to combine the new CSP with the traditional LPS to sinter solid electrolytes to achieve high densities and conductivities at reduced temperatures.This combined CSP-LPS approach can be extended to a broad range of other materials to fabricate the“thermally fragile”solid electrolytes or solid-state battery systems,where reducing the processing temperature is often desirable.
文摘In traditional ceramic processing techniques,high sintering temperature is necessary to achieve fully dense microstructures.But it can cause various problems including warpage,overfiring,element evaporation,and polymorphic transformation.To overcome these drawbacks,a novel processing technique called“tcold sintering process(CSP)”has been explored by Randall et al.CSP enables densification of ceramics at ultra-low temperature(<300℃)with the assistance o f transient aqueous solution and applied pressure.In CSP,the processing conditions including aqueous solution,pressure,temperature,and sintering duration play critical roles in the densification and properties of ceramics,which will be reviewed.The review will also include the applications of CSP in solid-state rechargeable batteries.Finally,the perspectives about CSP is proposed.
基金Funded by the National Natural Science Foundation of China(No.51302199)Key Natural Science Foundation of Hubei Province of China for Distinguished Yong Scholars(No.2014CFA044)+2 种基金Cultivation Plan for Science and Technology Talents of Wu Han City(No.2014072704011253)MOST Special Fund from the State Key Laboratory of Geological Process and Mineral Resources(No.MSFGPMR201204)Natural Science Foundation of Hubei Province(No.2014CFB809)
文摘The K_xNa_((1-x))NbO_3(x=0.45, 0.46, 0.47, 0.48, 0.49, 0.50) lead-free piezoelectric ceramics was fabricated by conventional solid-state sintering method. It was found that the ratio of alkaline metal would affect the microstructure, bulk density, and optimum sintering temperatures of ceramics. Meanwhile, the electrical properties were also influenced by modulating the K/Na ratio, exhibiting corresponding composition-dependent properties. The optimum electrical properties of K_xNa_((1-x))NbO_3 such as piezoelectric constant d_(33) = 115 pC/N, mechanical quality factor Q_m = 20, Curie temperature Tc = 365 ~oC, ε_(33)~T/ε_0= 588.1, dielectric loss tan δ = 0.024, bulk density(ρ) = 3.08 g/cm^3, remnant polarization(P_r) = 8.87 μC/cm^2 and coercive field(Ec) = 13.79 kV/cm were obtained at x = 0.46.
基金supported by the National Natural Science Foundation of China (Grant Nos.10972220,11021262 and 11125211)the National Basic Research Program of China (Grant No.2012CB937500)
文摘Effects of agglomerates on the densification behavior and microstructural evolution during solid-state sintering of a cube of copper particles have been studied with discrete element method (DEM).It is found that the densification of the sintering system decreases as the volume fraction of agglomerates increases.At a given volume fraction of agglomerates,the smaller the size of agglomerates,the poorer the densification and more inhomogeneous the compact is.The morphology and distribution of agglomerates have negligible effects on the densification,especially for the case with a low volume fraction of agglomerates.Agglomerates with a smaller average coordination number would have more restriction on the densification of sintering bodies.To our best knowledge,it is the first time to study the effect of agglomerates on sintering behavior using DEM.This study should be useful for further investigations of the effect of various inhomogeneities of microstructure on the complex sintering process by DEM.
基金supported by the Natural Science Foundation of Hebei Province,China(Grant No.A2014201176)the Science and Technology Research Projects of Colleges and Universities in Hebei Province,China(Grant No.ZD2014018).
文摘The effect of sintering temperature on thermoelectric properties of CdO ceramics was investigated by solid-state reaction method within the temperature range of 700-1000℃.With the increase of sintering temperature,both the grain size and the carrier concentration of these samples increased,while the Seebeck coefficient decreased.The highest dimensionless figure of merit ZT,0.34,was obtained at 1023 K for the sample sintered at 800℃,suggesting the potential application of CdO ceramics in thermoelectric(TE)devices.
基金Project(50323008) supported by the National Natural Science Foundation of China
文摘The availability using oxygen-rich powders to prepare ultrafine Ti(C,N)-based cermets was investigated. The deoxidation process, denitrification phenomenon and the effect of deoxidation on microstructure and mechanical properties of sintered samples were discussed, respectively. The results show that oxygen in the samples prepared even with high oxygen contained in starting powders can be almost completely cleaned away through suitable sintering process. The ultrafine oxygen-rich powders have a significant effect on microstructure, which promotes the formation of white core phase. A ultrafine Ti(C,N)-based cermet with mean particle size of 0. 30 μm, uniform microstructure and excellent mechanical properties is successfully prepared. It is also found that there exists severe denitrification phenomenon in the preparation process of ultrafine Ti(C,N)-based cermet.