[Objective] The paper was to identify stain ZY-19-2 with inhibitory effect against tobacco black shank (Phytophtora parasitica var.nicotianae Tucker), and study the fermentation condition of the strain. [Method]A st...[Objective] The paper was to identify stain ZY-19-2 with inhibitory effect against tobacco black shank (Phytophtora parasitica var.nicotianae Tucker), and study the fermentation condition of the strain. [Method]A strain ZY-19-2 with strong inhibitory effect against P. parasitica were isolated and screened from tobacco rhizosphere soil samples, and identified according to its morphological characteristics. The chitinase production activity of the strain under different culture conditions was also studied. [Result] For stain ZY-19-2 Paecilomyces lilacinus, the optimal fermentation conditions were as follows: 1.2% colloidal chitin as carbon source, 1% peptone as nitrogen source, 0.1% Tween 80 as surfactant, initial pH of fermentation broth at 6.0, the fermentation time of 60 h, inoculum amount at 1%, shaker speed at 120 r/min. The highest enzyme activity reached 0.216 U/ml. [Conclusion]The optimization of fermentation condition of strain ZY-19-2 lay foundation for large-scale production of cheap and efficient chitinase and chitin oligosaccharides, as well as application of the strain for control of tobacco black shank.展开更多
The biodegradations of phenol and 4-chlorophenol (4-cp) were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that the capacity of the...The biodegradations of phenol and 4-chlorophenol (4-cp) were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that the capacity of the CTM 2 to biodegrade 4-cp was increased up to 400 mg·L^-1 within 59.5 h. In the dual-substrate biodegradation both velocity and capacity of the CTM 2 to degrade 4-cp increased with low-concentration phenol. A totalof 400 mg·L^-1 4-cp was completely degraded within 50.'5 h in thepresence of 300 mg·L^-1 phenol. The maximum 4:cp biodegegradation could reach 440 mg·L^1 with 120 mg·L^1 phenol. Low-concentration 4-cp caused great inhibition on the CTM 2 to degrade phenol. In addition, the kinetic behaviors were described using the kinetic model proposed in this lab.展开更多
It has not been a simple matter to obtain a sound extension of the classical J2 flow theory of plasticity that incorporates a dependence on plastic strain gradients and that is capable of capturing size-dependent beha...It has not been a simple matter to obtain a sound extension of the classical J2 flow theory of plasticity that incorporates a dependence on plastic strain gradients and that is capable of capturing size-dependent behaviour of metals at the micron scale. Two classes of basic extensions of classical J2 theory have been proposed: one with increments in higher order stresses related to increments of strain gradients and the other characterized by the higher order stresses themselves expressed in terms of increments of strain gradients. The theories proposed by Muhlhans and Aifantis in 1991 and Fleck and Hutchinson in 2001 are in the first class, and, as formulated, these do not always satisfy thermodynamic requirements on plastic dissipation. On the other hand, theories of the second class proposed by Gudmundson in 2004 and Gurtin and Anand in 2009 have the physical deficiency that the higher order stress quantities can change discontinuously for bodies subject to arbitrarily small load changes. The present paper lays out this background to the quest for a sound phenomenological extension of the rateindependent J2 flow theory of plasticity to include a de- pendence on gradients of plastic strain. A modification of the Fleck-Hutchinson formulation that ensures its thermo- dynamic integrity is presented and contrasted with a comparable formulation of the second class where in the higher or- der stresses are expressed in terms of the plastic strain rate. Both versions are constructed to reduce to the classical J2 flow theory of plasticity when the gradients can be neglected and to coincide with the simpler and more readily formulated J2 deformation theory of gradient plasticity for deformation histories characterized by proportional straining.展开更多
The sequence encoding an E2 main antigen glycoprotein of the C strain of classical swine fever virus (CSFV) was highly expressed in the host cell E. coli BL21–CodonPlus (DE3)–RIL using the pGEX-4T-1 expression vecto...The sequence encoding an E2 main antigen glycoprotein of the C strain of classical swine fever virus (CSFV) was highly expressed in the host cell E. coli BL21–CodonPlus (DE3)–RIL using the pGEX-4T-1 expression vector and the soluble recombinant product was purified with Glutathione Sepharose TM4B by centrifugation. The soluble recombinant protein showed good immune reactions and was confirmed by Western blot using anti-CSFV-specific antibodies. Then an indirect ELISA with the purified E2 protein as the coating antigen was established to detect antibody against CSFV. The result revealed that the optimal concentration of coated antigen was 0.6 μg/well and the optimal dilution of serum was 1:80. The positive cut-off value of this ELISA assay was OD tested serum / OD negative serum≥2.1. The E2-ELISA method was evaluated by comparison with the indirect hemagglutination test (IHAT). When a total of 100 field serum samples were tested the sensitivity and specificity were 90.3% and 94.7% respectively. Specificity analysis showed that there were no cross-reactions between BVD serum and the purified E2 protein in the E2-ELISA.展开更多
The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties ...The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties and novel physics.The excellent flexibility and outstanding mechanical strength of 2D semiconductors provide opportunities for fabricated strain-sensitive devices and utilized strain tuning their electronic and optic–electric performance.The strain-engineered one-dimensional materials have been well investigated,while there is a long way to go for 2D semiconductors.In this review,starting with the fundamental theories of piezoelectric and piezoresistive effect resulted by strain,following we reviewed the recent simulation works of strain engineering in novel 2D semiconductors,such as Janus 2D and 2D-Xene structures.Moreover,recent advances in experimental observation of strain tuning PL spectra and transport behavior of 2D semiconductors are summarized.Furthermore,the applications of strain-engineered 2D semiconductors in sensors,photodetectors and nanogenerators are also highlighted.At last,we in-depth discussed future research directions of strain-engineered 2D semiconductor and related electronics and optoelectronics device applications.展开更多
Tensile strain of porous membrane materials can broaden their capacity in gas separation.In this work,using van der Waals corrected density functional theory(DFT)and molecular dynamics(MD)simulations,the performance a...Tensile strain of porous membrane materials can broaden their capacity in gas separation.In this work,using van der Waals corrected density functional theory(DFT)and molecular dynamics(MD)simulations,the performance and mechanism of CO2/CH4 separation through strain-oriented graphdiyne(GDY)monolayer were studied by applying lateral strain.It is demonstrated that the CO2 permeance peaks at 1.29×10^6 gas permeation units(GPU)accompanied with CO2/CH4 selectivity of 5.27×10^3 under ultimate strain,both of which are far beyond the Robeson’s limit.Furthermore,the GDY membrane exhibited a decreasing gas diffusion energy barrier and increasing permeance with the increase of applied tensile strain.CO2 molecule tends to reoriented itself vertically to permeate the membrane.Finally,the CO2 permeability decreases with the increase of the temperature from300 K to 500 K due to conserving of rotational freedom,suggesting an abnormal permeance of CO2 in relation to temperature.Our theoretical results suggest that the stretchable GDY monolayer holds great promise to be an excellent candidate for CO2/CH4 separation,owing to its extremely high selectivity and permeability of CO2.展开更多
基金Supported by Technology Development Project of Zhengzhou Tobacco Research Institute of CNTC"Isolation,Application and Research of Disease-resistant Endophyte"(122009CZ0420)~~
文摘[Objective] The paper was to identify stain ZY-19-2 with inhibitory effect against tobacco black shank (Phytophtora parasitica var.nicotianae Tucker), and study the fermentation condition of the strain. [Method]A strain ZY-19-2 with strong inhibitory effect against P. parasitica were isolated and screened from tobacco rhizosphere soil samples, and identified according to its morphological characteristics. The chitinase production activity of the strain under different culture conditions was also studied. [Result] For stain ZY-19-2 Paecilomyces lilacinus, the optimal fermentation conditions were as follows: 1.2% colloidal chitin as carbon source, 1% peptone as nitrogen source, 0.1% Tween 80 as surfactant, initial pH of fermentation broth at 6.0, the fermentation time of 60 h, inoculum amount at 1%, shaker speed at 120 r/min. The highest enzyme activity reached 0.216 U/ml. [Conclusion]The optimization of fermentation condition of strain ZY-19-2 lay foundation for large-scale production of cheap and efficient chitinase and chitin oligosaccharides, as well as application of the strain for control of tobacco black shank.
基金Supported by the science and Technology Innovative Talents Foundation of China (2006RFQXS070), the Youth Academic Cadreman Project of Heilongjiang Province (1152G068), Scientific Research Fund of Heilongjiang Province (11523063) and the Science Foundation for Post Doctorate of China (20070410268).
文摘The biodegradations of phenol and 4-chlorophenol (4-cp) were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that the capacity of the CTM 2 to biodegrade 4-cp was increased up to 400 mg·L^-1 within 59.5 h. In the dual-substrate biodegradation both velocity and capacity of the CTM 2 to degrade 4-cp increased with low-concentration phenol. A totalof 400 mg·L^-1 4-cp was completely degraded within 50.'5 h in thepresence of 300 mg·L^-1 phenol. The maximum 4:cp biodegegradation could reach 440 mg·L^1 with 120 mg·L^1 phenol. Low-concentration 4-cp caused great inhibition on the CTM 2 to degrade phenol. In addition, the kinetic behaviors were described using the kinetic model proposed in this lab.
文摘It has not been a simple matter to obtain a sound extension of the classical J2 flow theory of plasticity that incorporates a dependence on plastic strain gradients and that is capable of capturing size-dependent behaviour of metals at the micron scale. Two classes of basic extensions of classical J2 theory have been proposed: one with increments in higher order stresses related to increments of strain gradients and the other characterized by the higher order stresses themselves expressed in terms of increments of strain gradients. The theories proposed by Muhlhans and Aifantis in 1991 and Fleck and Hutchinson in 2001 are in the first class, and, as formulated, these do not always satisfy thermodynamic requirements on plastic dissipation. On the other hand, theories of the second class proposed by Gudmundson in 2004 and Gurtin and Anand in 2009 have the physical deficiency that the higher order stress quantities can change discontinuously for bodies subject to arbitrarily small load changes. The present paper lays out this background to the quest for a sound phenomenological extension of the rateindependent J2 flow theory of plasticity to include a de- pendence on gradients of plastic strain. A modification of the Fleck-Hutchinson formulation that ensures its thermo- dynamic integrity is presented and contrasted with a comparable formulation of the second class where in the higher or- der stresses are expressed in terms of the plastic strain rate. Both versions are constructed to reduce to the classical J2 flow theory of plasticity when the gradients can be neglected and to coincide with the simpler and more readily formulated J2 deformation theory of gradient plasticity for deformation histories characterized by proportional straining.
基金Society Commonweal Study of China (2001DIA10006)
文摘The sequence encoding an E2 main antigen glycoprotein of the C strain of classical swine fever virus (CSFV) was highly expressed in the host cell E. coli BL21–CodonPlus (DE3)–RIL using the pGEX-4T-1 expression vector and the soluble recombinant product was purified with Glutathione Sepharose TM4B by centrifugation. The soluble recombinant protein showed good immune reactions and was confirmed by Western blot using anti-CSFV-specific antibodies. Then an indirect ELISA with the purified E2 protein as the coating antigen was established to detect antibody against CSFV. The result revealed that the optimal concentration of coated antigen was 0.6 μg/well and the optimal dilution of serum was 1:80. The positive cut-off value of this ELISA assay was OD tested serum / OD negative serum≥2.1. The E2-ELISA method was evaluated by comparison with the indirect hemagglutination test (IHAT). When a total of 100 field serum samples were tested the sensitivity and specificity were 90.3% and 94.7% respectively. Specificity analysis showed that there were no cross-reactions between BVD serum and the purified E2 protein in the E2-ELISA.
基金supported by the National Natural Science Foundation of China(51572025,51627801,61435010 and 51702219)the State Key Research Development Program of China(2019YFB2203503)+3 种基金Guangdong Basic and Applied Basic Research Foundation(2019A1515110209)the Science and Technology Innovation Commission of Shenzhen(JCYJ20170818093453105,JCYJ20180305125345378)National Foundation of China(41422050303)Beijing Municipal Science&Technology Commission and the Fundamental Research Funds for Central Universities.
文摘The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties and novel physics.The excellent flexibility and outstanding mechanical strength of 2D semiconductors provide opportunities for fabricated strain-sensitive devices and utilized strain tuning their electronic and optic–electric performance.The strain-engineered one-dimensional materials have been well investigated,while there is a long way to go for 2D semiconductors.In this review,starting with the fundamental theories of piezoelectric and piezoresistive effect resulted by strain,following we reviewed the recent simulation works of strain engineering in novel 2D semiconductors,such as Janus 2D and 2D-Xene structures.Moreover,recent advances in experimental observation of strain tuning PL spectra and transport behavior of 2D semiconductors are summarized.Furthermore,the applications of strain-engineered 2D semiconductors in sensors,photodetectors and nanogenerators are also highlighted.At last,we in-depth discussed future research directions of strain-engineered 2D semiconductor and related electronics and optoelectronics device applications.
基金financial support received from the National Natural Science Foundation of China(21776301)the Science Foundation of China University of Petroleum,Beijing(2462018BJC004)。
文摘Tensile strain of porous membrane materials can broaden their capacity in gas separation.In this work,using van der Waals corrected density functional theory(DFT)and molecular dynamics(MD)simulations,the performance and mechanism of CO2/CH4 separation through strain-oriented graphdiyne(GDY)monolayer were studied by applying lateral strain.It is demonstrated that the CO2 permeance peaks at 1.29×10^6 gas permeation units(GPU)accompanied with CO2/CH4 selectivity of 5.27×10^3 under ultimate strain,both of which are far beyond the Robeson’s limit.Furthermore,the GDY membrane exhibited a decreasing gas diffusion energy barrier and increasing permeance with the increase of applied tensile strain.CO2 molecule tends to reoriented itself vertically to permeate the membrane.Finally,the CO2 permeability decreases with the increase of the temperature from300 K to 500 K due to conserving of rotational freedom,suggesting an abnormal permeance of CO2 in relation to temperature.Our theoretical results suggest that the stretchable GDY monolayer holds great promise to be an excellent candidate for CO2/CH4 separation,owing to its extremely high selectivity and permeability of CO2.