Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as hei...Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as height constraint plane block adjustment method.First,a rational function model with affine transformation is selected as the mathematical model of the satellite image plane block adjustment.Second,to update the ground coordinates of tie points(TPs),the plane coordinates of TPs are only solved in the adjustment process.Elevation values are obtained by using DEM interpolation.Finally,the plane coordinates of all TPs and orientation parameters of all satellite images are solved through plane block adjustment with a few ground control points ZY-3 nadir images for two regions are tested for plane block adjustment while ZY-3 forward-nadir-back images of the same two regions are tested for stereo block adjustment.A comparison indicates that almost the same accuracy can be obtained with plane block adjustment support using a 1∶50 000 DEM and stereo block adjustment for ZY-3 images.For ZY-3 nadir images,almost no loss of plane block adjustment accuracy occurred when global DEM with 1 km grid and SRTM with 90 m grid replaced the 1∶50 000 DEM as elevation control,.Test results demonstrate the effectiveness and feasibility of the plane block adjustment method.展开更多
At 11:17 on January 9,a LM-4B carrier rocket lifted off from the Taiyuan Satellite Launch Center,sending the first high-precision civilian stereo mapping satellite of China,Ziyuan 3 (ZY-3),into its preset orbit,markin...At 11:17 on January 9,a LM-4B carrier rocket lifted off from the Taiyuan Satellite Launch Center,sending the first high-precision civilian stereo mapping satellite of China,Ziyuan 3 (ZY-3),into its preset orbit,marking the first launch mission of 2012 a success.A small satellite of Luxembourg,VesselSat-2,was launched aboard the LM-4B as well.The ZY-3 satellite weighs 2650kg with a design lifetime of 5 years.The satellite was built to acquire rapidly展开更多
Block Adjustment(BA)is one of the essential techniques for producing high-precision geospatial 3D data products with optical stereo satellite imagery.For block adjustment with few ground-control points or without grou...Block Adjustment(BA)is one of the essential techniques for producing high-precision geospatial 3D data products with optical stereo satellite imagery.For block adjustment with few ground-control points or without ground control,the vertical error of the model is the decisive factor that constrains the accuracy of 3D data products.The elevation data obtained by spaceborne laser altimeter have the advantages of short update periods,high positioning precision,and low acquisition cost,providing sufficient data support for improving the elevation accuracy of stereo models through the combined BA.This paper proposes a geometric positioning model based on the integration of Optical Satellite Stereo Imagery(OSSI)and spaceborne laser altimeter data.Firstly,we elaborate the principle and necessity of this work through a literature review of existing methods.Then,the framework of our geo-positioning models.Secondly,four key technologies of the proposed model are expounded in order,including the acquisition and management of global Laser Control Points,the association of LCPs and OSSI,the block adjustment model combining LCPs with OSSI,and the accuracy estimation and quality control of the combined BA.Next,the combined BA experiment using Ziyuan-3(ZY-3)OSSI and ICESat-2 laser data was carried out at the testing site in Shandong Province,China.Experimental results prove that our method can automatically select LCPs with high accuracy.The elevation deviation of the combined BA eventually achieved the Mean Error(ME)of 0.06 m and the Root Mean Square Error(RMSE)of 1.18 m,much lower than the ME of 13.20 m and the RMSE of 3.88 m before the block adjustment.A further research direction will be how to perform more adequate accuracy analysis and quality control using massive laser points as checkpoints.展开更多
Detailed and precise urban land-cover maps are crucial for urban-related studies. However, there are limited ways of mapping high-resolution urban land cover over large areas. In this paper, we propose an operational ...Detailed and precise urban land-cover maps are crucial for urban-related studies. However, there are limited ways of mapping high-resolution urban land cover over large areas. In this paper, we propose an operational framework to map urban land cover on the basis of Ziyuan-3 satellite images. Based on this framework, we produced the first high-resolution(2 m) urban land-cover map(Hi-ULCM) covering the 42 major cities of China. The overall accuracy of the Hi-ULCM dataset is 88.55%, of which 14 cities have an overall accuracy of over 90%. Most of the producer’s accuracies and user’s accuracies of the land-cover classes exceed 85%. We further conducted a landscape pattern analysis in the 42 cities based on Hi-ULCM. In terms of the comparison between the 42 cities in China, we found that the difference in the land-cover composition of urban areas is related to the climatic characteristics and urbanization levels, e.g., cities with warm climates generally have higher proportions of green spaces. It is also interesting to find that cities with higher urbanization levels are more habitable, in general. From the landscape viewpoint, the geometric complexity of the landscape increases with the urbanization level.Compared with the existing medium-resolution land-cover/use datasets(at a 30-m resolution), HiULCM represents a significant advance in accurately depicting the detailed land-cover footprint within the urban areas of China, and will be of great use for studies of urban ecosystems.展开更多
The satellite visibility number of GNSS is an important indicator for evaluating its availability for positioning and navigation.In urban areas,urban canyons cause serious satellite signals block,resulting in position...The satellite visibility number of GNSS is an important indicator for evaluating its availability for positioning and navigation.In urban areas,urban canyons cause serious satellite signals block,resulting in positioning uncertainty.Many studies used 3D city models to evaluate the visible satellites in some areas at a certain time.Nevertheless,this kind of method is difficult to apply because 3D models are not widely available.This paper thus proposes an easy method to evaluate the visibility of satellites with widely available street view panoramic imagery and GNSS ephemeris.The proposed method utilizes the locations of street view panoramic imagery and the associated GNSS ephemeris to calculate the visible satellite number at different times.Hence,the visible satellite number at a specific time can be mapped.Moreover,the visibility of satellites can be predicted according to its orbit parameters.To evaluate the effectiveness of the proposed method,Wuhan and Shanghai were taken to map post-event,real-time and forecast GNSS visibility.The experiments demonstrated that the proposed method provides a light weighted and easy to use solution to map the spatio-temporal visibility of satellites in urban areas,which is an important reference for GNSS stations layout and positioning qualities evaluation.展开更多
As the important infrastructures for land mapping and resource monitoring,highresolution remote sensing satellites(HRSS)are urgently demanded for the development of China.In this article,the key technologies of the m...As the important infrastructures for land mapping and resource monitoring,highresolution remote sensing satellites(HRSS)are urgently demanded for the development of China.In this article,the key technologies of the main HRSS are summarized,and these technologies include sensor design,attitude and orbit determination,geometric calibration,imaging model construction,and block adjustment,etc.,which involve the mapping accuracy of HRSS.Finally,the system design of the ZY-3 Satellite(China’s first civil stereoscopic surveying and mapping satellite,to be launched in 2012)is introduced,which mainly include satellite technical specifications and strategies design based on these key technologies research.展开更多
The Austrian node of the Natural Resources Satellite Remote Sensing Cloud Service Platform was established in 2016 through a cooperation agreement between the Land Satellite Remote Sensing Application Center(LASAC),Mi...The Austrian node of the Natural Resources Satellite Remote Sensing Cloud Service Platform was established in 2016 through a cooperation agreement between the Land Satellite Remote Sensing Application Center(LASAC),Ministry of Natural Resources of the Peoples Republic of China and the University of Vienna,Austria.Under this agreement panchromatic and multi-spectral data of the Chinese ZY-3 satellite are pushed to the server at the University of Vienna for use in education and research.So far,nearly 500 GB of data have been uploaded to the server.This technical note briefly introduces the ZY-3 system and illustrates the implementation of the agreement by the first China-Sat Workshop and several case studies.Some of them are already completed,others are still ongoing.They include a geometric accuracy validation of ZY-3 data,an animated visualization of image quick views on a spherical display to demonstrate the time series of the image coverage for Austria and Laos,and the use of ZY-3 data to study the spread of bark beetle in the province of Lower Austria.An accuracy study of DTMs from ZY-3 stereo data,as well as a land cover analysis and comparison of Austria with ZY-3 and other sensors are still ongoing.展开更多
This paper presents the development and application of a three-dimensional numerical model for simulating the flow field and pollutant transport in a flood zone near the confluence of the Mississippi River and Iowa Ri...This paper presents the development and application of a three-dimensional numerical model for simulating the flow field and pollutant transport in a flood zone near the confluence of the Mississippi River and Iowa River during the US Midwest Flood in 2008. Due to a prolonged precipitation event, a levee along the Iowa River just upstream of Oakville, Iowa broke, and the small town was completely flooded for a couple of weeks. During this period, the high water level in the flood zone reached about 2.5 metersabove the ground, and wind was the major force for the flow circulation. It was observed that some pollutants were leaked from the residential and farming facilities and transported into the flood zone. Leaking of pollutants from these facilities was reported by different news media during the flood and was identified using high resolution satellite imagery. The developed 3D numerical model was first validated using experimental measurements, and then applied to the flood inundated zone in Oakville for simulating the unsteady hydrodynamics and pollutant transport. The simulated pollutant distributions were generally in good agreement with the observed data obtained from satellite imagery.展开更多
A 3D forest monitoring system,called FORSAT(a satellite very high resolution image processing platform for forest assessment),was developed for the extraction of 3D geometric forest information from very high resoluti...A 3D forest monitoring system,called FORSAT(a satellite very high resolution image processing platform for forest assessment),was developed for the extraction of 3D geometric forest information from very high resolution(VHR)satellite imagery and the automatic 3D change detection.FORSAT is composed of two complementary tasks:(1)the geometric and radiometric processing of satellite optical imagery and digital surface model(DSM)reconstruction by using a precise and robust image matching approach specially designed for VHR satellite imagery,(2)3D surface comparison for change detection.It allows the users to import DSMs,align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes(together with precision values)between epochs.FORSAT is a single source and flexible forest information solution,allowing expert and non-expert remote sensing users to monitor forests in three and four(time)dimensions.The geometric resolution and thematic content of VHR optical imagery are sufficient for many forest information needs such as deforestation,clear-cut and fire severity mapping.The capacity and benefits of FORSAT,as a forest information system contributing to the sustainable forest management,have been tested and validated in case studies located in Austria,Switzerland and Spain.展开更多
文摘Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as height constraint plane block adjustment method.First,a rational function model with affine transformation is selected as the mathematical model of the satellite image plane block adjustment.Second,to update the ground coordinates of tie points(TPs),the plane coordinates of TPs are only solved in the adjustment process.Elevation values are obtained by using DEM interpolation.Finally,the plane coordinates of all TPs and orientation parameters of all satellite images are solved through plane block adjustment with a few ground control points ZY-3 nadir images for two regions are tested for plane block adjustment while ZY-3 forward-nadir-back images of the same two regions are tested for stereo block adjustment.A comparison indicates that almost the same accuracy can be obtained with plane block adjustment support using a 1∶50 000 DEM and stereo block adjustment for ZY-3 images.For ZY-3 nadir images,almost no loss of plane block adjustment accuracy occurred when global DEM with 1 km grid and SRTM with 90 m grid replaced the 1∶50 000 DEM as elevation control,.Test results demonstrate the effectiveness and feasibility of the plane block adjustment method.
文摘At 11:17 on January 9,a LM-4B carrier rocket lifted off from the Taiyuan Satellite Launch Center,sending the first high-precision civilian stereo mapping satellite of China,Ziyuan 3 (ZY-3),into its preset orbit,marking the first launch mission of 2012 a success.A small satellite of Luxembourg,VesselSat-2,was launched aboard the LM-4B as well.The ZY-3 satellite weighs 2650kg with a design lifetime of 5 years.The satellite was built to acquire rapidly
基金supported by the National Science Fund for Distinguished Young Scholars[grant number 61825103]the Fundamental Research Funds for The Central Universities[grant number 2042022kf1002].
文摘Block Adjustment(BA)is one of the essential techniques for producing high-precision geospatial 3D data products with optical stereo satellite imagery.For block adjustment with few ground-control points or without ground control,the vertical error of the model is the decisive factor that constrains the accuracy of 3D data products.The elevation data obtained by spaceborne laser altimeter have the advantages of short update periods,high positioning precision,and low acquisition cost,providing sufficient data support for improving the elevation accuracy of stereo models through the combined BA.This paper proposes a geometric positioning model based on the integration of Optical Satellite Stereo Imagery(OSSI)and spaceborne laser altimeter data.Firstly,we elaborate the principle and necessity of this work through a literature review of existing methods.Then,the framework of our geo-positioning models.Secondly,four key technologies of the proposed model are expounded in order,including the acquisition and management of global Laser Control Points,the association of LCPs and OSSI,the block adjustment model combining LCPs with OSSI,and the accuracy estimation and quality control of the combined BA.Next,the combined BA experiment using Ziyuan-3(ZY-3)OSSI and ICESat-2 laser data was carried out at the testing site in Shandong Province,China.Experimental results prove that our method can automatically select LCPs with high accuracy.The elevation deviation of the combined BA eventually achieved the Mean Error(ME)of 0.06 m and the Root Mean Square Error(RMSE)of 1.18 m,much lower than the ME of 13.20 m and the RMSE of 3.88 m before the block adjustment.A further research direction will be how to perform more adequate accuracy analysis and quality control using massive laser points as checkpoints.
基金supported by the National Natural Science Foundation of China (41771360 and 41971295)the National Program for Support of Top-notch Young Professionals, the Hubei Provincial Natural Science Foundation of China (2017CFA029)the National Key Resarch & Development Program of China (2016YFB0501403)。
文摘Detailed and precise urban land-cover maps are crucial for urban-related studies. However, there are limited ways of mapping high-resolution urban land cover over large areas. In this paper, we propose an operational framework to map urban land cover on the basis of Ziyuan-3 satellite images. Based on this framework, we produced the first high-resolution(2 m) urban land-cover map(Hi-ULCM) covering the 42 major cities of China. The overall accuracy of the Hi-ULCM dataset is 88.55%, of which 14 cities have an overall accuracy of over 90%. Most of the producer’s accuracies and user’s accuracies of the land-cover classes exceed 85%. We further conducted a landscape pattern analysis in the 42 cities based on Hi-ULCM. In terms of the comparison between the 42 cities in China, we found that the difference in the land-cover composition of urban areas is related to the climatic characteristics and urbanization levels, e.g., cities with warm climates generally have higher proportions of green spaces. It is also interesting to find that cities with higher urbanization levels are more habitable, in general. From the landscape viewpoint, the geometric complexity of the landscape increases with the urbanization level.Compared with the existing medium-resolution land-cover/use datasets(at a 30-m resolution), HiULCM represents a significant advance in accurately depicting the detailed land-cover footprint within the urban areas of China, and will be of great use for studies of urban ecosystems.
基金funded by the National Science Fund for Distinguished Young Scholars of China(No.41725005)the National Key R&D Program of China(No.2017YFB0504201)the National Natural Science Foundation of China(No.41761082).
文摘The satellite visibility number of GNSS is an important indicator for evaluating its availability for positioning and navigation.In urban areas,urban canyons cause serious satellite signals block,resulting in positioning uncertainty.Many studies used 3D city models to evaluate the visible satellites in some areas at a certain time.Nevertheless,this kind of method is difficult to apply because 3D models are not widely available.This paper thus proposes an easy method to evaluate the visibility of satellites with widely available street view panoramic imagery and GNSS ephemeris.The proposed method utilizes the locations of street view panoramic imagery and the associated GNSS ephemeris to calculate the visible satellite number at different times.Hence,the visible satellite number at a specific time can be mapped.Moreover,the visibility of satellites can be predicted according to its orbit parameters.To evaluate the effectiveness of the proposed method,Wuhan and Shanghai were taken to map post-event,real-time and forecast GNSS visibility.The experiments demonstrated that the proposed method provides a light weighted and easy to use solution to map the spatio-temporal visibility of satellites in urban areas,which is an important reference for GNSS stations layout and positioning qualities evaluation.
文摘As the important infrastructures for land mapping and resource monitoring,highresolution remote sensing satellites(HRSS)are urgently demanded for the development of China.In this article,the key technologies of the main HRSS are summarized,and these technologies include sensor design,attitude and orbit determination,geometric calibration,imaging model construction,and block adjustment,etc.,which involve the mapping accuracy of HRSS.Finally,the system design of the ZY-3 Satellite(China’s first civil stereoscopic surveying and mapping satellite,to be launched in 2012)is introduced,which mainly include satellite technical specifications and strategies design based on these key technologies research.
基金This work was supported by the National Key R&D Program of China for Strategic International Cooperation in Science and Technology Innovation(Grant No.2016YFE0205300)as well as a grant under the Eurasia Pacific UNINET program of the Austrian Federal Ministry of Education,Science and Research to the University of Vienna(Grant No.EPU 32/2017).
文摘The Austrian node of the Natural Resources Satellite Remote Sensing Cloud Service Platform was established in 2016 through a cooperation agreement between the Land Satellite Remote Sensing Application Center(LASAC),Ministry of Natural Resources of the Peoples Republic of China and the University of Vienna,Austria.Under this agreement panchromatic and multi-spectral data of the Chinese ZY-3 satellite are pushed to the server at the University of Vienna for use in education and research.So far,nearly 500 GB of data have been uploaded to the server.This technical note briefly introduces the ZY-3 system and illustrates the implementation of the agreement by the first China-Sat Workshop and several case studies.Some of them are already completed,others are still ongoing.They include a geometric accuracy validation of ZY-3 data,an animated visualization of image quick views on a spherical display to demonstrate the time series of the image coverage for Austria and Laos,and the use of ZY-3 data to study the spread of bark beetle in the province of Lower Austria.An accuracy study of DTMs from ZY-3 stereo data,as well as a land cover analysis and comparison of Austria with ZY-3 and other sensors are still ongoing.
文摘This paper presents the development and application of a three-dimensional numerical model for simulating the flow field and pollutant transport in a flood zone near the confluence of the Mississippi River and Iowa River during the US Midwest Flood in 2008. Due to a prolonged precipitation event, a levee along the Iowa River just upstream of Oakville, Iowa broke, and the small town was completely flooded for a couple of weeks. During this period, the high water level in the flood zone reached about 2.5 metersabove the ground, and wind was the major force for the flow circulation. It was observed that some pollutants were leaked from the residential and farming facilities and transported into the flood zone. Leaking of pollutants from these facilities was reported by different news media during the flood and was identified using high resolution satellite imagery. The developed 3D numerical model was first validated using experimental measurements, and then applied to the flood inundated zone in Oakville for simulating the unsteady hydrodynamics and pollutant transport. The simulated pollutant distributions were generally in good agreement with the observed data obtained from satellite imagery.
基金the EUROSTARS[grant number E!7358]funding scheme,co-funded by the European Commission and the participating countries.
文摘A 3D forest monitoring system,called FORSAT(a satellite very high resolution image processing platform for forest assessment),was developed for the extraction of 3D geometric forest information from very high resolution(VHR)satellite imagery and the automatic 3D change detection.FORSAT is composed of two complementary tasks:(1)the geometric and radiometric processing of satellite optical imagery and digital surface model(DSM)reconstruction by using a precise and robust image matching approach specially designed for VHR satellite imagery,(2)3D surface comparison for change detection.It allows the users to import DSMs,align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes(together with precision values)between epochs.FORSAT is a single source and flexible forest information solution,allowing expert and non-expert remote sensing users to monitor forests in three and four(time)dimensions.The geometric resolution and thematic content of VHR optical imagery are sufficient for many forest information needs such as deforestation,clear-cut and fire severity mapping.The capacity and benefits of FORSAT,as a forest information system contributing to the sustainable forest management,have been tested and validated in case studies located in Austria,Switzerland and Spain.