The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentra...Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentration based on the absorption lines of NH_(3) in the thermal infrared region. In this study, we establish a retrieval algorithm to derive the NH_(3)column from the Hyperspectral Infrared Atmospheric Sounder(HIRAS) onboard the Chinese Feng Yun(FY)-3D satellite and present the first atmospheric NH_(3) column global map observed by the HIRAS instrument. The HIRAS observations can well capture NH_(3) hotspots around the world, e.g., India, West Africa, and East China, where large NH_(3) emissions exist. The HIRAS NH_(3) columns are also compared to the space-based Infrared Atmospheric Sounding Interferometer(IASI)measurements, and we find that the two instruments observe a consistent NH_(3) global distribution, with correlation coefficient(R) values of 0.28–0.73. Finally, some remaining issues about the HIRAS NH_(3) retrieval are discussed.展开更多
Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol develo...Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.展开更多
Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxida...Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.展开更多
The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional method...The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional methods for creating digital surface models are insufficient to reflect the details of earth’s features. These models only represent three-dimensional objects in a single texture and fail to offer a realistic depiction of the real world. Furthermore, the need for current and precise geographic information regarding urban areas has been increasing significantly. This study proposes a new technique to address this problem, which involves integrating remote sensing, Geographic Information Systems (GIS), and Architecture Environment software environments to generate a detailed three-dimensional model. The processing of this study starts with: 1) Downloading high-resolution satellite imagery; 2) Collecting ground truth datasets from fieldwork; 3) Imaging nose removing; 4) Generating a Two-dimensional Model to create a digital surface model in GIS using the extracted building outlines; 5) Converting the model into multi-patch layers to construct a 3D model for each object separately. The results show that the 3D model obtained through this method is highly detailed and effective for various applications, including environmental studies, urban development, expansion planning, and shape understanding tasks.展开更多
Leaf area index(LAI) is a key factor that determines a forest ecosystem's net primary production and energy exchange between the atmosphere and land surfaces.LAI can be measured in many ways, but there has been li...Leaf area index(LAI) is a key factor that determines a forest ecosystem's net primary production and energy exchange between the atmosphere and land surfaces.LAI can be measured in many ways, but there has been little research to compare LAI estimated by different methods. In this study, we compared the LAI results from two different approaches, i.e., the dimidiate pixel model(DPM) and an empirical statistic model(ESM) using ZY-3 high-accuracy satellite images validated by field data. We explored the relationship of LAI of Larix principis-rupprechtii Mayr plantations with topographic conditions. The results show that DPM improves the simulation of LAI(r = 0.86,RMSE = 0.57) compared with ESM(r = 0.62, RMSE =0.79). We further concluded that elevation and slope significantly affect the distribution of LAI. The maximum peak of LAI appeared at an aspect of east and southeast at an elevation of 1700–2000 m. Our results suggest that ZY-3 can satisfy the needs of quantitative monitoring of leaf area indices in small-scale catchment areas. DPM provides a simple and accurate method to obtain forest vegetation parameters in the case of non-ground measurement points.展开更多
Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as hei...Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as height constraint plane block adjustment method.First,a rational function model with affine transformation is selected as the mathematical model of the satellite image plane block adjustment.Second,to update the ground coordinates of tie points(TPs),the plane coordinates of TPs are only solved in the adjustment process.Elevation values are obtained by using DEM interpolation.Finally,the plane coordinates of all TPs and orientation parameters of all satellite images are solved through plane block adjustment with a few ground control points ZY-3 nadir images for two regions are tested for plane block adjustment while ZY-3 forward-nadir-back images of the same two regions are tested for stereo block adjustment.A comparison indicates that almost the same accuracy can be obtained with plane block adjustment support using a 1∶50 000 DEM and stereo block adjustment for ZY-3 images.For ZY-3 nadir images,almost no loss of plane block adjustment accuracy occurred when global DEM with 1 km grid and SRTM with 90 m grid replaced the 1∶50 000 DEM as elevation control,.Test results demonstrate the effectiveness and feasibility of the plane block adjustment method.展开更多
At 11:17 on January 9,a LM-4B carrier rocket lifted off from the Taiyuan Satellite Launch Center,sending the first high-precision civilian stereo mapping satellite of China,Ziyuan 3 (ZY-3),into its preset orbit,markin...At 11:17 on January 9,a LM-4B carrier rocket lifted off from the Taiyuan Satellite Launch Center,sending the first high-precision civilian stereo mapping satellite of China,Ziyuan 3 (ZY-3),into its preset orbit,marking the first launch mission of 2012 a success.A small satellite of Luxembourg,VesselSat-2,was launched aboard the LM-4B as well.The ZY-3 satellite weighs 2650kg with a design lifetime of 5 years.The satellite was built to acquire rapidly展开更多
Accurate brightness temperature(BT)is a top priority for retrievals of atmospheric and surface parameters.Microwave Radiation Imagers(MWRIs)on Chinese Fengyun-3(FY-3)serial polar-orbiting satellites have been providin...Accurate brightness temperature(BT)is a top priority for retrievals of atmospheric and surface parameters.Microwave Radiation Imagers(MWRIs)on Chinese Fengyun-3(FY-3)serial polar-orbiting satellites have been providing abundant BT data since 2008.Much work has been done to evaluate short-term MWRI observations,but the long-term performance of MWRIs remains unclear.In this study,operational MWRI BTs from 2012–19 were carefully examined by using simultaneous Advanced Microwave Scanning Radiometer 2(AMSR2)BTs as the reference.The BT difference between MWRI/FY3B and AMSR2 during 2012–19 increased gradually over time.As compared with MWRI/FY3B BTs over land,those of MWRI/FY3D were much closer to those of AMSR2.The ascending and descending orbit difference for MWRI/FY3D is also much smaller than that for MWRI/FY3B.These results suggested the improvement of MWRI/FY3D over MWRI/FY3B.A substantial BT difference between AMSR2 and MWRI was found over water,especially at the vertical polarization channels.A similar BT difference was found over polar water based on the simultaneous conical overpassing(SCO)method.Radiative transfer model simulations suggested that the substantial BT differences at the vertical polarization channels of MWRI and AMSR2 over water were partly contributed by their difference in the incident angle;however,the underestimation of the operational MWRI BT over water remained a very important issue.Preliminary assessment of the operational and recalibrated MWRI BT demonstrated that MWRI BTs were substantially improved after the recalibration,including the obvious underestimation of the operational MWRI BT at the vertical polarization channels over water was corrected,and the time-dependent biases were reduced.展开更多
FY-3 is the second generation polar-orbiting meteorological satellite of China. The first satellite named FY-3A of this series was launched on 27 May 2008. The first operational satellite named FY-3C of this series wa...FY-3 is the second generation polar-orbiting meteorological satellite of China. The first satellite named FY-3A of this series was launched on 27 May 2008. The first operational satellite named FY-3C of this series was launched on 23 September, 2013. The new generation satellites are to provide three-dimensional, quantitative, multi-spectral global remote sensing data under all weather conditions, which will greatly help the operational numerical weather prediction, global climate change research, climate diagnostics and prediction, and natural disaster monitoring. They will also provide help for many other fields such as agriculture, forestry, oceanography and hydrology. With the above-mentioned capability, the FY-3 satellites can make valuable contributions to improving weather forecasts, global natural-disaster and environmental monitoring.展开更多
Fengyun-3 E(FY-3E),the world’s first early-morning-orbit meteorological satellite for civil use,was launched successfully at the Jiuquan Satellite Launch Center on 5 July 2021.The FY-3E satellite will fill the vacanc...Fengyun-3 E(FY-3E),the world’s first early-morning-orbit meteorological satellite for civil use,was launched successfully at the Jiuquan Satellite Launch Center on 5 July 2021.The FY-3E satellite will fill the vacancy of the global early-morning-orbit satellite observation,working together with the FY-3C and FY-3D satellites to achieve the data coverage of early morning,morning,and afternoon orbits.The combination of these three satellites will provide global data coverage for numerical weather prediction(NWP)at 6-hour intervals,effectively improving the accuracy and time efficiency of global NWP,which is of great significance to perfect the global earth observing system.In this article,the background and meteorological requirements for the early-morning-orbit satellite are reviewed,and the specifications of the FY-3E satellite,as well as the characteristics of the onboard instrumentation for earth observations,are also introduced.In addition,the ground segment and the retrieved geophysical products are also presented.It is believed that the NWP communities will significantly benefit from an optimal temporal distribution of observations provided by the early morning,mid-morning,and afternoon satellite missions.Further benefits are expected in numerous applications such as the monitoring of severe weather/climate events,the development of improved sampling designs of the diurnal cycle for accurate climate data records,more efficient monitoring of air quality by thermal infrared remote sensing,and the quasicontinuous monitoring of the sun for space weather and climate.展开更多
The ECMWF has been assimilating Feng-Yun-3B (FY-3B) satellite microwave humidity sounder (MWHS) data over ocean in an operational forecasting system since 24 September 2014, It is more difficult, however, to assim...The ECMWF has been assimilating Feng-Yun-3B (FY-3B) satellite microwave humidity sounder (MWHS) data over ocean in an operational forecasting system since 24 September 2014, It is more difficult, however, to assimilate microwave observations over land and sea ice than over the open ocean due to higher uncertainties in land surface temperature, surface emissivity and less effective cloud screening. We compare approaches in which the emissivity is retrieved dynamically from MWHS channel l [150 GHz (vertical polarization)] with the use of an evolving emissivity atlas from 89 GHz observations from the MWHS onboard NOAA and EUMETSAT satellites. The assimilation of the additional data over land improves the fit of short-range forecasts to other observations, notably ATMS (Advanced Technology Microwave Sounder) humidity channels, and the forecast impacts are mainly neutral to slightly positive over the first five days. The forecast impacts are better in boreal summer and the Southern Hemisphere. These results suggest that the techniques tested allow for effective assimilation of MWHS/FY-3B data over land.展开更多
The GF-3 satellite, the first C band and multi-polarization Synthetic Aperture Radar(SAR) satellite in China, achieved breakthroughs in a number of key technologies such as multi-polarization and the design of a multi...The GF-3 satellite, the first C band and multi-polarization Synthetic Aperture Radar(SAR) satellite in China, achieved breakthroughs in a number of key technologies such as multi-polarization and the design of a multiimaging mode, a multi-polarization phased array SAR antenna, and in internal calibration technology. The satellite technology adopted the principle of "Demand Pulls, Technology Pushes", creating a series of innovation firsts, reaching or surpassing the technical specifications of an international level.展开更多
China's new generation of polar-orbiting meteorological satellite FY-3A was successfully launched on May 26,2008,carrying microwave sounding devices which had similar performance to ATOVS of NOAA series.In order t...China's new generation of polar-orbiting meteorological satellite FY-3A was successfully launched on May 26,2008,carrying microwave sounding devices which had similar performance to ATOVS of NOAA series.In order to study the application of microwave sounding data in numerical prediction of typhoons and to improve typhoon forecasting,we assimilated data directly for numerical forecasting of the track and intensity of the 2009 typhoon Morakot(0908)based on the WRF-3DVar system.Results showed that the initial fields of the numerical model due to direct assimilation of FY-3A microwave sounding data was improved much more than that due to assimilation of conventional observations alone,and the improvement was especially significant over the ocean,which is always without conventional observations.The model initial fields were more reasonable in reflecting the initial situation of typhoon circulation as well as temperature and humidity conditions,and typhoon central position at sea was also adjusted.Through direct 3DVar assimilation of FY-3A microwave data,the regional mesoscale model improves the forecasting of typhoon track.Therefore,the FY-3A microwave data could efficiently improve the numerical prediction of typhoons.展开更多
Quantitative analysis and retrieval is given by the State Key Laboratory of Satellite Ocean Environment Dynamics(SOED),Second Institute of Oceanography(SIO),State Oceanic Administration(SOA),China,from the first...Quantitative analysis and retrieval is given by the State Key Laboratory of Satellite Ocean Environment Dynamics(SOED),Second Institute of Oceanography(SIO),State Oceanic Administration(SOA),China,from the first batch of GF-3 synthetic aperture radar(SAR)data with ocean internal wave features in the Yellow Sea.展开更多
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
基金supported by the Feng Yun Application Pioneering Project (FY-APP-2022.0502)the National Natural Science Foundation of China (Grant No. 42205140)。
文摘Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentration based on the absorption lines of NH_(3) in the thermal infrared region. In this study, we establish a retrieval algorithm to derive the NH_(3)column from the Hyperspectral Infrared Atmospheric Sounder(HIRAS) onboard the Chinese Feng Yun(FY)-3D satellite and present the first atmospheric NH_(3) column global map observed by the HIRAS instrument. The HIRAS observations can well capture NH_(3) hotspots around the world, e.g., India, West Africa, and East China, where large NH_(3) emissions exist. The HIRAS NH_(3) columns are also compared to the space-based Infrared Atmospheric Sounding Interferometer(IASI)measurements, and we find that the two instruments observe a consistent NH_(3) global distribution, with correlation coefficient(R) values of 0.28–0.73. Finally, some remaining issues about the HIRAS NH_(3) retrieval are discussed.
基金supported by Jiangsu Provincial Key Research and Development Program (No.BE20210132)the Zhejiang Provincial Key Research and Development Program (No.2021C01040)the team of S-SET
文摘Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.
文摘Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.
文摘The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional methods for creating digital surface models are insufficient to reflect the details of earth’s features. These models only represent three-dimensional objects in a single texture and fail to offer a realistic depiction of the real world. Furthermore, the need for current and precise geographic information regarding urban areas has been increasing significantly. This study proposes a new technique to address this problem, which involves integrating remote sensing, Geographic Information Systems (GIS), and Architecture Environment software environments to generate a detailed three-dimensional model. The processing of this study starts with: 1) Downloading high-resolution satellite imagery; 2) Collecting ground truth datasets from fieldwork; 3) Imaging nose removing; 4) Generating a Two-dimensional Model to create a digital surface model in GIS using the extracted building outlines; 5) Converting the model into multi-patch layers to construct a 3D model for each object separately. The results show that the 3D model obtained through this method is highly detailed and effective for various applications, including environmental studies, urban development, expansion planning, and shape understanding tasks.
基金supported by the National Forestry Public Welfare Professional Scientific Research Project(No.201404213)the National Key Research and Development Program of China(No.2016YFD0600205)
文摘Leaf area index(LAI) is a key factor that determines a forest ecosystem's net primary production and energy exchange between the atmosphere and land surfaces.LAI can be measured in many ways, but there has been little research to compare LAI estimated by different methods. In this study, we compared the LAI results from two different approaches, i.e., the dimidiate pixel model(DPM) and an empirical statistic model(ESM) using ZY-3 high-accuracy satellite images validated by field data. We explored the relationship of LAI of Larix principis-rupprechtii Mayr plantations with topographic conditions. The results show that DPM improves the simulation of LAI(r = 0.86,RMSE = 0.57) compared with ESM(r = 0.62, RMSE =0.79). We further concluded that elevation and slope significantly affect the distribution of LAI. The maximum peak of LAI appeared at an aspect of east and southeast at an elevation of 1700–2000 m. Our results suggest that ZY-3 can satisfy the needs of quantitative monitoring of leaf area indices in small-scale catchment areas. DPM provides a simple and accurate method to obtain forest vegetation parameters in the case of non-ground measurement points.
文摘Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as height constraint plane block adjustment method.First,a rational function model with affine transformation is selected as the mathematical model of the satellite image plane block adjustment.Second,to update the ground coordinates of tie points(TPs),the plane coordinates of TPs are only solved in the adjustment process.Elevation values are obtained by using DEM interpolation.Finally,the plane coordinates of all TPs and orientation parameters of all satellite images are solved through plane block adjustment with a few ground control points ZY-3 nadir images for two regions are tested for plane block adjustment while ZY-3 forward-nadir-back images of the same two regions are tested for stereo block adjustment.A comparison indicates that almost the same accuracy can be obtained with plane block adjustment support using a 1∶50 000 DEM and stereo block adjustment for ZY-3 images.For ZY-3 nadir images,almost no loss of plane block adjustment accuracy occurred when global DEM with 1 km grid and SRTM with 90 m grid replaced the 1∶50 000 DEM as elevation control,.Test results demonstrate the effectiveness and feasibility of the plane block adjustment method.
文摘At 11:17 on January 9,a LM-4B carrier rocket lifted off from the Taiyuan Satellite Launch Center,sending the first high-precision civilian stereo mapping satellite of China,Ziyuan 3 (ZY-3),into its preset orbit,marking the first launch mission of 2012 a success.A small satellite of Luxembourg,VesselSat-2,was launched aboard the LM-4B as well.The ZY-3 satellite weighs 2650kg with a design lifetime of 5 years.The satellite was built to acquire rapidly
基金supported by the National Key R&D Program of China(Grant No.2022YFF0801301)the National Natural Science Foundation of China(Grant No.41575033)。
文摘Accurate brightness temperature(BT)is a top priority for retrievals of atmospheric and surface parameters.Microwave Radiation Imagers(MWRIs)on Chinese Fengyun-3(FY-3)serial polar-orbiting satellites have been providing abundant BT data since 2008.Much work has been done to evaluate short-term MWRI observations,but the long-term performance of MWRIs remains unclear.In this study,operational MWRI BTs from 2012–19 were carefully examined by using simultaneous Advanced Microwave Scanning Radiometer 2(AMSR2)BTs as the reference.The BT difference between MWRI/FY3B and AMSR2 during 2012–19 increased gradually over time.As compared with MWRI/FY3B BTs over land,those of MWRI/FY3D were much closer to those of AMSR2.The ascending and descending orbit difference for MWRI/FY3D is also much smaller than that for MWRI/FY3B.These results suggested the improvement of MWRI/FY3D over MWRI/FY3B.A substantial BT difference between AMSR2 and MWRI was found over water,especially at the vertical polarization channels.A similar BT difference was found over polar water based on the simultaneous conical overpassing(SCO)method.Radiative transfer model simulations suggested that the substantial BT differences at the vertical polarization channels of MWRI and AMSR2 over water were partly contributed by their difference in the incident angle;however,the underestimation of the operational MWRI BT over water remained a very important issue.Preliminary assessment of the operational and recalibrated MWRI BT demonstrated that MWRI BTs were substantially improved after the recalibration,including the obvious underestimation of the operational MWRI BT at the vertical polarization channels over water was corrected,and the time-dependent biases were reduced.
文摘FY-3 is the second generation polar-orbiting meteorological satellite of China. The first satellite named FY-3A of this series was launched on 27 May 2008. The first operational satellite named FY-3C of this series was launched on 23 September, 2013. The new generation satellites are to provide three-dimensional, quantitative, multi-spectral global remote sensing data under all weather conditions, which will greatly help the operational numerical weather prediction, global climate change research, climate diagnostics and prediction, and natural disaster monitoring. They will also provide help for many other fields such as agriculture, forestry, oceanography and hydrology. With the above-mentioned capability, the FY-3 satellites can make valuable contributions to improving weather forecasts, global natural-disaster and environmental monitoring.
基金funded by the FY3-03 project and the National Key Technology Research and Development Program of China(Grant Nos.2018YFB0504900 and 2018YFB0504905)。
文摘Fengyun-3 E(FY-3E),the world’s first early-morning-orbit meteorological satellite for civil use,was launched successfully at the Jiuquan Satellite Launch Center on 5 July 2021.The FY-3E satellite will fill the vacancy of the global early-morning-orbit satellite observation,working together with the FY-3C and FY-3D satellites to achieve the data coverage of early morning,morning,and afternoon orbits.The combination of these three satellites will provide global data coverage for numerical weather prediction(NWP)at 6-hour intervals,effectively improving the accuracy and time efficiency of global NWP,which is of great significance to perfect the global earth observing system.In this article,the background and meteorological requirements for the early-morning-orbit satellite are reviewed,and the specifications of the FY-3E satellite,as well as the characteristics of the onboard instrumentation for earth observations,are also introduced.In addition,the ground segment and the retrieved geophysical products are also presented.It is believed that the NWP communities will significantly benefit from an optimal temporal distribution of observations provided by the early morning,mid-morning,and afternoon satellite missions.Further benefits are expected in numerous applications such as the monitoring of severe weather/climate events,the development of improved sampling designs of the diurnal cycle for accurate climate data records,more efficient monitoring of air quality by thermal infrared remote sensing,and the quasicontinuous monitoring of the sun for space weather and climate.
基金supported by the National Natural Science Foundation of China (Grant No. 41505014)
文摘The ECMWF has been assimilating Feng-Yun-3B (FY-3B) satellite microwave humidity sounder (MWHS) data over ocean in an operational forecasting system since 24 September 2014, It is more difficult, however, to assimilate microwave observations over land and sea ice than over the open ocean due to higher uncertainties in land surface temperature, surface emissivity and less effective cloud screening. We compare approaches in which the emissivity is retrieved dynamically from MWHS channel l [150 GHz (vertical polarization)] with the use of an evolving emissivity atlas from 89 GHz observations from the MWHS onboard NOAA and EUMETSAT satellites. The assimilation of the additional data over land improves the fit of short-range forecasts to other observations, notably ATMS (Advanced Technology Microwave Sounder) humidity channels, and the forecast impacts are mainly neutral to slightly positive over the first five days. The forecast impacts are better in boreal summer and the Southern Hemisphere. These results suggest that the techniques tested allow for effective assimilation of MWHS/FY-3B data over land.
文摘The GF-3 satellite, the first C band and multi-polarization Synthetic Aperture Radar(SAR) satellite in China, achieved breakthroughs in a number of key technologies such as multi-polarization and the design of a multiimaging mode, a multi-polarization phased array SAR antenna, and in internal calibration technology. The satellite technology adopted the principle of "Demand Pulls, Technology Pushes", creating a series of innovation firsts, reaching or surpassing the technical specifications of an international level.
基金EXPO special Project(10dz0581300)Natural Science Fund from Science and Technology Commission of Shanghai Municipality(09ZR1428700)National Department(Meteorology)Public Benefit Research Foundation(GYHY200906002)
文摘China's new generation of polar-orbiting meteorological satellite FY-3A was successfully launched on May 26,2008,carrying microwave sounding devices which had similar performance to ATOVS of NOAA series.In order to study the application of microwave sounding data in numerical prediction of typhoons and to improve typhoon forecasting,we assimilated data directly for numerical forecasting of the track and intensity of the 2009 typhoon Morakot(0908)based on the WRF-3DVar system.Results showed that the initial fields of the numerical model due to direct assimilation of FY-3A microwave sounding data was improved much more than that due to assimilation of conventional observations alone,and the improvement was especially significant over the ocean,which is always without conventional observations.The model initial fields were more reasonable in reflecting the initial situation of typhoon circulation as well as temperature and humidity conditions,and typhoon central position at sea was also adjusted.Through direct 3DVar assimilation of FY-3A microwave data,the regional mesoscale model improves the forecasting of typhoon track.Therefore,the FY-3A microwave data could efficiently improve the numerical prediction of typhoons.
基金The National Key R&D Program of China under contract No.2016YFC1401007the National Natural Science Foundation of China under contract Nos 41406203 and 41621064the National High Resolution Project of China under contract No.41-Y20A14-9001-15/16
文摘Quantitative analysis and retrieval is given by the State Key Laboratory of Satellite Ocean Environment Dynamics(SOED),Second Institute of Oceanography(SIO),State Oceanic Administration(SOA),China,from the first batch of GF-3 synthetic aperture radar(SAR)data with ocean internal wave features in the Yellow Sea.