引入了W-引代数偏序集与强W-代数偏序集的概念。讨论了W-代数偏序集、Exact偏序集以及代数偏序集的关系,证明了W-代数偏序集在保定向并的单的核算子下的像是W-代数偏序集。最后得到了每一点有最小局部基的弱Domain是强W-代数Domain,证...引入了W-引代数偏序集与强W-代数偏序集的概念。讨论了W-代数偏序集、Exact偏序集以及代数偏序集的关系,证明了W-代数偏序集在保定向并的单的核算子下的像是W-代数偏序集。最后得到了每一点有最小局部基的弱Domain是强W-代数Domain,证明了弱Domain上的Scott连续映射保局部基当且仅当它保Weakly way below关系。展开更多
In the present paper we investigate prinjective Ringel-Hall algebras, for prinjective modules over incidence algebras of posers of finite prinjective type. Results we obtain are analogous to these, given by C. M. Ring...In the present paper we investigate prinjective Ringel-Hall algebras, for prinjective modules over incidence algebras of posers of finite prinjective type. Results we obtain are analogous to these, given by C. M. Ringel, for representations of Dynkin quivers. In particular we give a description of prinjective Ringel-Hall algebras by generators and relations.展开更多
In the present paper we describe a specialization of prinjective Ringel-Hall algebra to 1, for prinjective modules over incidence algebras of posets of finite prinjective type, by generators and relations. This gives ...In the present paper we describe a specialization of prinjective Ringel-Hall algebra to 1, for prinjective modules over incidence algebras of posets of finite prinjective type, by generators and relations. This gives us a generalisation of Serre relations for semisimple Lie algebras. Connections of prinjective Ringel-Hall algebras with classical Lie algebras are also discussed.展开更多
文摘引入了W-引代数偏序集与强W-代数偏序集的概念。讨论了W-代数偏序集、Exact偏序集以及代数偏序集的关系,证明了W-代数偏序集在保定向并的单的核算子下的像是W-代数偏序集。最后得到了每一点有最小局部基的弱Domain是强W-代数Domain,证明了弱Domain上的Scott连续映射保局部基当且仅当它保Weakly way below关系。
文摘In the present paper we investigate prinjective Ringel-Hall algebras, for prinjective modules over incidence algebras of posers of finite prinjective type. Results we obtain are analogous to these, given by C. M. Ringel, for representations of Dynkin quivers. In particular we give a description of prinjective Ringel-Hall algebras by generators and relations.
文摘In the present paper we describe a specialization of prinjective Ringel-Hall algebra to 1, for prinjective modules over incidence algebras of posets of finite prinjective type, by generators and relations. This gives us a generalisation of Serre relations for semisimple Lie algebras. Connections of prinjective Ringel-Hall algebras with classical Lie algebras are also discussed.