Biofertilizer can be defined as preparation that contains?microbes capable of?nitrogen (N)-fixation and phosphate solubilization that promote plant?growth. These groups?of microbes, classified as Plant Growth-Promotin...Biofertilizer can be defined as preparation that contains?microbes capable of?nitrogen (N)-fixation and phosphate solubilization that promote plant?growth. These groups?of microbes, classified as Plant Growth-Promoting Bacteria (PGPB), colonize the rhizosphere and the soil. In this work, liquid biofertilizer was produced from whole orange, banana and grape, wheat and rice chaff,?Moringa oleifera?leaves, soil, and brown sugar (as carbon source) mixed with water and cultured in an anaerobic condition for two weeks. The sieved culture was stored in a tightly sealed PVC container at room temperature for biochemical analysis of microbial population. Nitrogen fixing bacteria (Azotobacter?sp.) and phosphorus solubilizing bacteria were isolated using Ashby’s Mannitol Azotobacter medium and Pisvikoya’s PSB medium respectively, while?Bacillus sp. was isolated using Bacillus agar. Field experiment was carried out to investigate the performance rates of the biofertilizer against those of the Nitrogen/Phosphorus/Potassium (NPK) chemical fertilizer and the control, on the growth of corn (Zea mays). The experimental design consisted of three treatments of the Biofertilizer, Chemical fertilizer (NPK) and Control, conducted in three replicates. Data collected were analyzed using?one-way ANOVA at?P?< 0.05. The results showed significant improvement in growth and yield of maize on which biofertilizer was applied as against those treated with NPK and the Control. The plants treated with the biofertilizer did not show signs of insects attack, which were easily observed on the blades of those treated with NPK and the control.展开更多
文摘Biofertilizer can be defined as preparation that contains?microbes capable of?nitrogen (N)-fixation and phosphate solubilization that promote plant?growth. These groups?of microbes, classified as Plant Growth-Promoting Bacteria (PGPB), colonize the rhizosphere and the soil. In this work, liquid biofertilizer was produced from whole orange, banana and grape, wheat and rice chaff,?Moringa oleifera?leaves, soil, and brown sugar (as carbon source) mixed with water and cultured in an anaerobic condition for two weeks. The sieved culture was stored in a tightly sealed PVC container at room temperature for biochemical analysis of microbial population. Nitrogen fixing bacteria (Azotobacter?sp.) and phosphorus solubilizing bacteria were isolated using Ashby’s Mannitol Azotobacter medium and Pisvikoya’s PSB medium respectively, while?Bacillus sp. was isolated using Bacillus agar. Field experiment was carried out to investigate the performance rates of the biofertilizer against those of the Nitrogen/Phosphorus/Potassium (NPK) chemical fertilizer and the control, on the growth of corn (Zea mays). The experimental design consisted of three treatments of the Biofertilizer, Chemical fertilizer (NPK) and Control, conducted in three replicates. Data collected were analyzed using?one-way ANOVA at?P?< 0.05. The results showed significant improvement in growth and yield of maize on which biofertilizer was applied as against those treated with NPK and the Control. The plants treated with the biofertilizer did not show signs of insects attack, which were easily observed on the blades of those treated with NPK and the control.