Metal-organic frameworks(MOFs)have been intensely studied for the past few decades as an enormous family of highly tunable porous materials with promisingly applicable functionalities in adsorption,separation,catalysi...Metal-organic frameworks(MOFs)have been intensely studied for the past few decades as an enormous family of highly tunable porous materials with promisingly applicable functionalities in adsorption,separation,catalysis,sensing,electrochemistry,and a great number of emerging purposes.As a classic MOF,zeolitic imidazolate framework-8(ZIF-8)is conventionally one of the very few MOF members that has been commercialized with considerable production.展开更多
The feasibility of adsorption and the adsorption behavior of radon on a nanomaterial-based zeolitic imidazolate framework-8(ZIF-8) adsorbent were investigated.Grand canonical Monte Carlo simulation and four-channel lo...The feasibility of adsorption and the adsorption behavior of radon on a nanomaterial-based zeolitic imidazolate framework-8(ZIF-8) adsorbent were investigated.Grand canonical Monte Carlo simulation and four-channel low-background a/b measurement were performed to examine the adsorption kinetics of this adsorbent. Results demonstrated that ZIF-8 is a good adsorbent of radon.Therefore, this adsorbent can be used to significantly reduce the hazardous effects of radon on occupational radiation workers.展开更多
Zeolitic imidazolate framework-8(ZIF-8)with porous structure,biocompatibility,and pH-sensitive release behavior is a promising nanoplatform for protein delivery.However,it is still a challenging task for a practical s...Zeolitic imidazolate framework-8(ZIF-8)with porous structure,biocompatibility,and pH-sensitive release behavior is a promising nanoplatform for protein delivery.However,it is still a challenging task for a practical synthesis of protein-loaded ZIF-8 nanoparticles.Here we report an all-aqueous microfluidic reactor for one-step,rapid,and highly controlled synthesis of ZIF-8 nanoparticles with high protein loading at room temperature.Microfluidic reactor allows for an ultrafast(<35 ms),complete mixing of Zn2+ions and 2-methylimidazole(2-MIM)at different molecular ratios,leading to the formation of stable ZIF-8 nanoparticles with tunable sizes(13.2–191.4 nm)in less than 30 s.By pre-mixing various proteins such as bovine serum albumin(BSA)(isoelectric point(pI)=5.82),ovalbumin(OVA)(pI=4.82),or RNase A(pI=8.93)with 2-MIM,ZIF-8 nanoparticles can be synthesized with protein encapsulation efficiency over 97%.Among the nanoparticles with different sizes,25 nm ZIF-8 nanoparticles show the best performance in promoting the cellular uptake of protein payload.Using OVA as a model protein,we demonstrate that 25 nm ZIF-8 nanoparticles significantly enhance the cytosolic delivery of antigen,as indicated by the effective activation of dendritic cells.We anticipate that this microfluidic synthesis of nanomaterials may advance the emerging field of cytosolic protein delivery.展开更多
Zeolitie imidazolate framework-8(ZIF-8),composed of Zn ions and imidazolate ligands,is a class of metal-organic frameworks,which possesses a similar structure as conventional aluminosilicate zeolites.This material exh...Zeolitie imidazolate framework-8(ZIF-8),composed of Zn ions and imidazolate ligands,is a class of metal-organic frameworks,which possesses a similar structure as conventional aluminosilicate zeolites.This material exhibits inherent porous property,high loading capacity,and pH-sensitive degradation,as well as excep-tional thermal and chemical stability.Extensive research effort has been devoted 10 relevant research aspects ranging from synthesis methods,property characterization to potential applications of ZIF-8.This review focuses on the recent development of ZIF-8 synthesis methods and its promising appications in drug delivery.The potential risks of using ZIF-8 for drug delivery are also summarized.展开更多
Fe-N-C endowed with inexpensiveness,high activity,and excellent anti-poisoning power have emerged as promising candidate catalysts for oxygen reduction reaction(ORR).Single-atom Fe-N-C electrocatalysts derived from Fe...Fe-N-C endowed with inexpensiveness,high activity,and excellent anti-poisoning power have emerged as promising candidate catalysts for oxygen reduction reaction(ORR).Single-atom Fe-N-C electrocatalysts derived from Fe-doped ZIF-8 represent the top-level ORR performance.However,the current fabrication of Fe-doped ZIF-8 relies on heavy consumption of time,energy,cost and organic solvents.Herein,we develop a rapid and solvent-free method to produce Fe-doped ZIF-8 under microwave irradiation,which can be easily amplified in combination with ball-milling.After rational pyrolysis,Fe-N-C catalysts with atomic FeN4 sites well dispersed on the hierarchically porous carbon matrix are obtained,which exhibit exceptional ORR performance with a half-wave potential of 0.782 V(vs.reversible hydrogen electrode(RHE))and brilliant methanol tolerance.The assembled direct methanol fuel cells(DMFCs)endow a peak power density of 61 mW cm^(-2) and extraordinary stability,highlighting the application perspective of this strategy.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51603052 and 51573216)the Fundamental Research Funds for the Central Universities(Grant Nos.18lgpy02 and 16lgjc66).
文摘Metal-organic frameworks(MOFs)have been intensely studied for the past few decades as an enormous family of highly tunable porous materials with promisingly applicable functionalities in adsorption,separation,catalysis,sensing,electrochemistry,and a great number of emerging purposes.As a classic MOF,zeolitic imidazolate framework-8(ZIF-8)is conventionally one of the very few MOF members that has been commercialized with considerable production.
基金Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Open Project of Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection(No.KJS1246)
文摘The feasibility of adsorption and the adsorption behavior of radon on a nanomaterial-based zeolitic imidazolate framework-8(ZIF-8) adsorbent were investigated.Grand canonical Monte Carlo simulation and four-channel low-background a/b measurement were performed to examine the adsorption kinetics of this adsorbent. Results demonstrated that ZIF-8 is a good adsorbent of radon.Therefore, this adsorbent can be used to significantly reduce the hazardous effects of radon on occupational radiation workers.
基金supported by the National Key R&D Program of China(Nos.2020YFA0210800 and 2021YFA0909400)the National Natural Science Foundation of China(Nos.22025402,22227805,T2222008,and 22174030)+1 种基金The Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB36020300)CAS Project for Young Scientists in Basic Research(No.YSBR-036).
文摘Zeolitic imidazolate framework-8(ZIF-8)with porous structure,biocompatibility,and pH-sensitive release behavior is a promising nanoplatform for protein delivery.However,it is still a challenging task for a practical synthesis of protein-loaded ZIF-8 nanoparticles.Here we report an all-aqueous microfluidic reactor for one-step,rapid,and highly controlled synthesis of ZIF-8 nanoparticles with high protein loading at room temperature.Microfluidic reactor allows for an ultrafast(<35 ms),complete mixing of Zn2+ions and 2-methylimidazole(2-MIM)at different molecular ratios,leading to the formation of stable ZIF-8 nanoparticles with tunable sizes(13.2–191.4 nm)in less than 30 s.By pre-mixing various proteins such as bovine serum albumin(BSA)(isoelectric point(pI)=5.82),ovalbumin(OVA)(pI=4.82),or RNase A(pI=8.93)with 2-MIM,ZIF-8 nanoparticles can be synthesized with protein encapsulation efficiency over 97%.Among the nanoparticles with different sizes,25 nm ZIF-8 nanoparticles show the best performance in promoting the cellular uptake of protein payload.Using OVA as a model protein,we demonstrate that 25 nm ZIF-8 nanoparticles significantly enhance the cytosolic delivery of antigen,as indicated by the effective activation of dendritic cells.We anticipate that this microfluidic synthesis of nanomaterials may advance the emerging field of cytosolic protein delivery.
基金SMF and ZW acknowledge the financial support from the Natural Science Foundation of Tianjin(No.19JCYBJC28400)。
文摘Zeolitie imidazolate framework-8(ZIF-8),composed of Zn ions and imidazolate ligands,is a class of metal-organic frameworks,which possesses a similar structure as conventional aluminosilicate zeolites.This material exhibits inherent porous property,high loading capacity,and pH-sensitive degradation,as well as excep-tional thermal and chemical stability.Extensive research effort has been devoted 10 relevant research aspects ranging from synthesis methods,property characterization to potential applications of ZIF-8.This review focuses on the recent development of ZIF-8 synthesis methods and its promising appications in drug delivery.The potential risks of using ZIF-8 for drug delivery are also summarized.
基金financially supported by the Key Program of the Chinese Academy of Sciences(KFZD-SW-419),Chinathe Major Research Plan of the National Natural Science Foundation of China(91834301),China。
文摘Fe-N-C endowed with inexpensiveness,high activity,and excellent anti-poisoning power have emerged as promising candidate catalysts for oxygen reduction reaction(ORR).Single-atom Fe-N-C electrocatalysts derived from Fe-doped ZIF-8 represent the top-level ORR performance.However,the current fabrication of Fe-doped ZIF-8 relies on heavy consumption of time,energy,cost and organic solvents.Herein,we develop a rapid and solvent-free method to produce Fe-doped ZIF-8 under microwave irradiation,which can be easily amplified in combination with ball-milling.After rational pyrolysis,Fe-N-C catalysts with atomic FeN4 sites well dispersed on the hierarchically porous carbon matrix are obtained,which exhibit exceptional ORR performance with a half-wave potential of 0.782 V(vs.reversible hydrogen electrode(RHE))and brilliant methanol tolerance.The assembled direct methanol fuel cells(DMFCs)endow a peak power density of 61 mW cm^(-2) and extraordinary stability,highlighting the application perspective of this strategy.