Developing robust oxygen electrocatalyst with high-performance is very significant for practical rechargeable Zn-air battery.We report herein the preparation of three-dimensional continuous nanocarbon network composed...Developing robust oxygen electrocatalyst with high-performance is very significant for practical rechargeable Zn-air battery.We report herein the preparation of three-dimensional continuous nanocarbon network composed of interconnected nitrogen-doped carbon nanotubes and its application as oxygen electrocatalysis in rechargeable Zn-air battery.Except the excellent electrochemical bifunctionality,this carbon nanotube matrix also delivers an impressive battery performance.Specifically,an opencircuit voltage of 1.50 V as well as a high power density of 220 m W cm^(-2) with remarkable cycling stability for 1600 h is achieved in the rechargeable Zn-air battery.The study not only provides an efficient bifunctional oxygen electrocatalyst but more importantly may pave significant concepts in designing robust electrode for long-life rechargeable Zn-air battery and other energy technologies.展开更多
Zeolitic-imidazole frameworks(ZIFs)derivations have widely emerged as an efficient air cathode of zinc-air batteries(ZABs)due to excellent bifunctional oxygen electrocatalysis performance.However,they are not stable e...Zeolitic-imidazole frameworks(ZIFs)derivations have widely emerged as an efficient air cathode of zinc-air batteries(ZABs)due to excellent bifunctional oxygen electrocatalysis performance.However,they are not stable enough for long-term operation of rechargeable ZABs because of weak association with current collector,especially under bending conditions for flexible ZAB devices.Here,we show that by purposely designing coordinatively unsaturated ZIFs via a facile morphology regulation,which can be chemically linked on acid-treated carbon cloth,a stable Co-N-C air cathode is therefore derived where Co nanoparticles(NPs)are uniformly confined within the Co-N-C matrix on carbon cloth(Co/Co-N-C/CC).Specifically,when without being stabilized from carbon cloth,the pyrolysis of ZIFs with different unsaturated coordination levels has a negligible impact on the bifunctional oxygen-catalyzed performance.The optimal Co/Co-N-C/CC catalyst assembled ZAB possesses a large open circuit voltage of 1.415 V and a high peak power density of 163 mW·cm^(−2) as well as excellent cycling durability upon 630 discharge–charge cycles with 61%voltage efficiency remained,largely exceeding those of a benchmark Pt/C-IrO_(2) catalyst assembled ZAB.The synergy between Co NPs and active Co-N-C sites via electronic interaction induces the outstanding bifunctional oxygen-catalyzed activity and cathode performance.The present work highlights the importance of unsaturated coordination structures in ZIFs precursors for the performance of derived nanostructures in integrated electrodes.展开更多
An efcient and simple in-situ growth strategy has been discovered for the preparation of highly reproducible and continuous symbiotic ZIF-8-based anticorrosion coating by using graphene oxide(GO)/Mg AlNO3layered doubl...An efcient and simple in-situ growth strategy has been discovered for the preparation of highly reproducible and continuous symbiotic ZIF-8-based anticorrosion coating by using graphene oxide(GO)/Mg AlNO3layered double hydroxides(G/LDHs) buffer layer as a new type of connecting carrier based on micro-arc oxide(MAO) coating of AZ31 magnesium alloy. The components of ZIF-8 were adsorbed and bounded to the surface of the G/LDHs buffer layer-modified substrates to promote the nucleation of ZIF-8,thus growing a phase-pure, uniform, and good symbiosis ZIF-8 membrane. ZIF-8 particles with different growth times compensate for the grain boundary defects of the G/LDHs coating precursor buffer layer to different degrees. The prepared ZIF-8-based coating has excellent stability and corrosion resistance. The results demonstrate that the G/LDHs buffer layer provides a new channel for the MOF-modified MAO substrate of AZ31 magnesium alloy. It also proves that it is feasible to build high-performance anticorrosive coatings with MOF materials.展开更多
基金financially supported by the National Natural Science Foundation of China(21802048,21805103,21805104)the Fundamental Research Funds for the Central Universities(2018KFYXKJC044,2018KFYYXJJ121,2017KFXKJC002,2017KFYXJJ164)the National 1000 Young Talents Program of China。
文摘Developing robust oxygen electrocatalyst with high-performance is very significant for practical rechargeable Zn-air battery.We report herein the preparation of three-dimensional continuous nanocarbon network composed of interconnected nitrogen-doped carbon nanotubes and its application as oxygen electrocatalysis in rechargeable Zn-air battery.Except the excellent electrochemical bifunctionality,this carbon nanotube matrix also delivers an impressive battery performance.Specifically,an opencircuit voltage of 1.50 V as well as a high power density of 220 m W cm^(-2) with remarkable cycling stability for 1600 h is achieved in the rechargeable Zn-air battery.The study not only provides an efficient bifunctional oxygen electrocatalyst but more importantly may pave significant concepts in designing robust electrode for long-life rechargeable Zn-air battery and other energy technologies.
基金supported by the Fundamental Research Funds for the Central Universities(No.40120631)Natural Science Foundation of Hubei Province(No.20211j0188).
文摘Zeolitic-imidazole frameworks(ZIFs)derivations have widely emerged as an efficient air cathode of zinc-air batteries(ZABs)due to excellent bifunctional oxygen electrocatalysis performance.However,they are not stable enough for long-term operation of rechargeable ZABs because of weak association with current collector,especially under bending conditions for flexible ZAB devices.Here,we show that by purposely designing coordinatively unsaturated ZIFs via a facile morphology regulation,which can be chemically linked on acid-treated carbon cloth,a stable Co-N-C air cathode is therefore derived where Co nanoparticles(NPs)are uniformly confined within the Co-N-C matrix on carbon cloth(Co/Co-N-C/CC).Specifically,when without being stabilized from carbon cloth,the pyrolysis of ZIFs with different unsaturated coordination levels has a negligible impact on the bifunctional oxygen-catalyzed performance.The optimal Co/Co-N-C/CC catalyst assembled ZAB possesses a large open circuit voltage of 1.415 V and a high peak power density of 163 mW·cm^(−2) as well as excellent cycling durability upon 630 discharge–charge cycles with 61%voltage efficiency remained,largely exceeding those of a benchmark Pt/C-IrO_(2) catalyst assembled ZAB.The synergy between Co NPs and active Co-N-C sites via electronic interaction induces the outstanding bifunctional oxygen-catalyzed activity and cathode performance.The present work highlights the importance of unsaturated coordination structures in ZIFs precursors for the performance of derived nanostructures in integrated electrodes.
基金financially supported by the National Natural Science Foundation of China (Nos.51971040,52171101)the Natural Science Foundation of Chongqing (No.cstc2021jcyj-msxm X0613)+1 种基金the National Natural Science Foundation of China (Nos.52001036,51971044)the Independent Research Project of State Key Laboratory of Mechanical Transmissions (No.SKLMT-ZZKT-2021M11)。
文摘An efcient and simple in-situ growth strategy has been discovered for the preparation of highly reproducible and continuous symbiotic ZIF-8-based anticorrosion coating by using graphene oxide(GO)/Mg AlNO3layered double hydroxides(G/LDHs) buffer layer as a new type of connecting carrier based on micro-arc oxide(MAO) coating of AZ31 magnesium alloy. The components of ZIF-8 were adsorbed and bounded to the surface of the G/LDHs buffer layer-modified substrates to promote the nucleation of ZIF-8,thus growing a phase-pure, uniform, and good symbiosis ZIF-8 membrane. ZIF-8 particles with different growth times compensate for the grain boundary defects of the G/LDHs coating precursor buffer layer to different degrees. The prepared ZIF-8-based coating has excellent stability and corrosion resistance. The results demonstrate that the G/LDHs buffer layer provides a new channel for the MOF-modified MAO substrate of AZ31 magnesium alloy. It also proves that it is feasible to build high-performance anticorrosive coatings with MOF materials.