The migration of deformable drops in the channel flow neglecting the gravity influence is investigated numerically by solving the incompressible Navier-Stokes equations using the finite- difference method coupled with...The migration of deformable drops in the channel flow neglecting the gravity influence is investigated numerically by solving the incompressible Navier-Stokes equations using the finite- difference method coupled with the front-tracking technique.The objectives of this study are to examine the effectiveness of the present approach for predicting the migration of drops in a shear flow and to investigate the behavior of the drop migration in the channel flow under zero-gravity.To validate the present calculation,some typical results are compared with available computational and theoretical data,which confirms that the present approach is reliable in predicting the drop migration. With respect to the drop migration in the channel flow at finite Reynolds numbers,the drops either move to an equilibrium lateral position or undergo an oscillatory motion under different conditions. The effects of some typical parameters,e.g.,the Reynolds number,the Weber number,the viscosity ratio and the density ratio of the drop fluid to the suspending medium,and the drop size,on the migration of drops are discussed and analyzed.展开更多
Gravity compensation refers to the creation of a constant supporting force to fully or partly counteract the gravitational force for ground verification to simulate the spacecraft dynamics in outer space with zero-or ...Gravity compensation refers to the creation of a constant supporting force to fully or partly counteract the gravitational force for ground verification to simulate the spacecraft dynamics in outer space with zero-or micro-gravity. Gravity compensation is usually implemented via a very low stiffness suspension/supporting unit, and a servo system in series is adopted to extend the simulation range to hundreds of millimeters. The error of suspension force can be up to tens of Newton due to the contact/friction in the suspension/supporting unit and the error of the force/pressure sensor. It has become a bottleneck for the ground verification of spacecraft guidance, navigation, and control systems with extreme requirements, such as tons of payload and fine thrust in sub-Newtons. In this article, a novel gravity compensation method characterized by quasi-zero stiffness plus quasi-zero deformation(QZS-QZD) is proposed. A magnetic negative stiffness spring in parallel with positive springs and aerostatic bearing is adopted to form a QZS supporting unit, and disturbance forces, such as contact or friction, can be eliminated. The deformation of the QZS supporting unit is measured via a displacement sensor, and the QZD control strategy is applied to guarantee the force error of gravity compensation to be less than sub-newtons and irrelevant to the payload. The principle of gravity compensation with QZS-QZD is analyzed, and performance tests on a prototype are carried out. The results show that when the spacecraft moves smoothly, the absolute force error is less than 0.5 N, the relative error of gravity compensation is less than 0.1%, and when collisions with other objects occur, the relative errors are 0.32% and 0.65%. The proposed method can significantly improve the gravity compensation accuracy in comparison with conventional approaches.展开更多
基金The project supported by the National Natural Science Foundation of China (10125210) and the Hundred-Talent Programme of the Chinese Academy of Sciences
文摘The migration of deformable drops in the channel flow neglecting the gravity influence is investigated numerically by solving the incompressible Navier-Stokes equations using the finite- difference method coupled with the front-tracking technique.The objectives of this study are to examine the effectiveness of the present approach for predicting the migration of drops in a shear flow and to investigate the behavior of the drop migration in the channel flow under zero-gravity.To validate the present calculation,some typical results are compared with available computational and theoretical data,which confirms that the present approach is reliable in predicting the drop migration. With respect to the drop migration in the channel flow at finite Reynolds numbers,the drops either move to an equilibrium lateral position or undergo an oscillatory motion under different conditions. The effects of some typical parameters,e.g.,the Reynolds number,the Weber number,the viscosity ratio and the density ratio of the drop fluid to the suspending medium,and the drop size,on the migration of drops are discussed and analyzed.
基金supported by the National Key R&D Program of China (Grant No. 2020YFB2007601)the National Natural Science Foundation of China (Grant No. 52075193)the National Major Science and Technology Projects of China (Grant No. 2017ZX02101007-002)。
文摘Gravity compensation refers to the creation of a constant supporting force to fully or partly counteract the gravitational force for ground verification to simulate the spacecraft dynamics in outer space with zero-or micro-gravity. Gravity compensation is usually implemented via a very low stiffness suspension/supporting unit, and a servo system in series is adopted to extend the simulation range to hundreds of millimeters. The error of suspension force can be up to tens of Newton due to the contact/friction in the suspension/supporting unit and the error of the force/pressure sensor. It has become a bottleneck for the ground verification of spacecraft guidance, navigation, and control systems with extreme requirements, such as tons of payload and fine thrust in sub-Newtons. In this article, a novel gravity compensation method characterized by quasi-zero stiffness plus quasi-zero deformation(QZS-QZD) is proposed. A magnetic negative stiffness spring in parallel with positive springs and aerostatic bearing is adopted to form a QZS supporting unit, and disturbance forces, such as contact or friction, can be eliminated. The deformation of the QZS supporting unit is measured via a displacement sensor, and the QZD control strategy is applied to guarantee the force error of gravity compensation to be less than sub-newtons and irrelevant to the payload. The principle of gravity compensation with QZS-QZD is analyzed, and performance tests on a prototype are carried out. The results show that when the spacecraft moves smoothly, the absolute force error is less than 0.5 N, the relative error of gravity compensation is less than 0.1%, and when collisions with other objects occur, the relative errors are 0.32% and 0.65%. The proposed method can significantly improve the gravity compensation accuracy in comparison with conventional approaches.