A 330-500 GHz zero-biased broadband monolithic integrated tripler is reported. The measured results show that the maximum efficiency and the maximum output power are 2% and 194μW at 348 GHz. The saturation characteri...A 330-500 GHz zero-biased broadband monolithic integrated tripler is reported. The measured results show that the maximum efficiency and the maximum output power are 2% and 194μW at 348 GHz. The saturation characteristic test shows that the output i dB compression point is about -8.5 dBm at 334 GHz and the maximum efficiency is obtained at the point, which is slightly below the 1 dB compression point. Compared with the conventional hybrid integrated circuit, a major advantage of the monolithic integrated circuit is the significant improvement of reliability and consistency. In this work, a terahertz monolithic frequency multiplier at this band is designed and fabricated.展开更多
We revisited the vortex states of 2H-NbSe_(2) towards zero fields by a low-temperature scanning tunneling microscope.Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splittin...We revisited the vortex states of 2H-NbSe_(2) towards zero fields by a low-temperature scanning tunneling microscope.Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splitting zero bias peak, and the other is an in-gap conductance anomaly resembling evolved crossing features around the center of the three nearest vortices.Both of them distribute solely along the next nearest neighboring direction of the vortex lattice and become unresolved in much higher magnetic fields, implying an important role played by the vortex–vortex interactions. To clarify these issues,we have studied the intrinsic vortex states of the isolated trapped vortex in zero fields at 0.45 K. It is concluded that the anisotropic zero bias peak is attributed to the superconducting gap anisotropy, and the spatially evolved crossing features are related to the vortex–vortex interaction. The vortex core size under the zero-field limit is determined. These results provide a paradigm for studying the inherent vortex states of type-II superconductors especially based on an isolated vortex.展开更多
This letter adopts a GA (Genetic Algorithm) approach to assist in learning scaling of features that are most favorable to SVM (Support Vector Machines) classifier, which is named as GA-SVM. The relevant coefficients o...This letter adopts a GA (Genetic Algorithm) approach to assist in learning scaling of features that are most favorable to SVM (Support Vector Machines) classifier, which is named as GA-SVM. The relevant coefficients of various features to the classification task, measured by real-valued scaling, are estimated efficiently by using GA. And GA exploits heavy-bias operator to promote sparsity in the scaling of features. There are many potential benefits of this method:Feature selection is performed by eliminating irrelevant features whose scaling is zero, an SVM classifier that has enhanced generalization ability can be learned simultaneously. Experimental comparisons using original SVM and GA-SVM demonstrate both economical feature selection and excellent classification accuracy on junk e-mail recognition problem and Internet ad recognition problem. The experimental results show that comparing with original SVM classifier, the number of support vector decreases significantly and better classification results are achieved based on GA-SVM. It also demonstrates that GA can provide a simple, general, and powerful framework for tuning parameters in optimal problem, which directly improves the recognition performance and recognition rate of SVM.展开更多
The electronic transport properties of oligoacenes sandwiched between two Au(111) surfaces with serial and parrallel configurations were investigeted by using a fully self-consistent nonequilibrium Green's function...The electronic transport properties of oligoacenes sandwiched between two Au(111) surfaces with serial and parrallel configurations were investigeted by using a fully self-consistent nonequilibrium Green's function method combined with density functional calculations. This theoretical results show that the conductivity of oligoacenes with both sandwiched configurations at low bias voltage is mainly determined by the tail of the transmission peak from the perturbed highest occupied molecular orbital. When the molecular length increases, the zero-bias voltage conductance G(0) of oligoacenes with serial configuration neither follows Magoga's exponential law nor displays the even-odd oscillation effect, while the G(O) of the oligoacenes sandwiched with parallel configuration monotonically increases. The reduction of energy gaps, the alignment of the Fermi level, and the spatial distribution of the perturbed molecular orbitals are used to self-consistently explore the transport mechanism through oligoacenes.展开更多
By solving the Bogoliubov-de Gennes equation, the influence of the interplay of Rashba spin-orbit coupling, induced superconducting pair potential, and external magnetic field on the spin-polarized coherent charge tra...By solving the Bogoliubov-de Gennes equation, the influence of the interplay of Rashba spin-orbit coupling, induced superconducting pair potential, and external magnetic field on the spin-polarized coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions is investigated based on the Blonder-Tinkham-Klapwijk theory. The coherence effect is characterized by the strong oscillations of the charge conductance as a function of the bias voltage or the thickness of the semiconductor nanowire, resulting from the quantum interference of incoming and outgoing quasiparticles in the nanowire. Such oscillations can be effectively modulated by varying the strength of the Rashba spin-orbit coupling, the thickness of the nanowire, or the strength of the external magnetic field. It is also shown that two different types of zero-bias conductance peaks may occur under some particular conditions, which have some different characteristics and may be due to different mechanisms.展开更多
A self-driven photosensor with signal-reversal response has the potential to work as a photodetector in complex environments with multiple signals owing to better signal recognition and enhanced signal-processing effi...A self-driven photosensor with signal-reversal response has the potential to work as a photodetector in complex environments with multiple signals owing to better signal recognition and enhanced signal-processing efficiency.Herein,a metal-semiconductor-metal photodetector based on ambipolar WSe_(2) with two electrodes comprising two-dimensional(2 D) van der Waals(vdWs) metal Fe_(3)GeTe_(2) and semimetal graphene was proposed to form an asymmetrical metal-contacted architecture with different Schottky barrier heights.The regulating gate field-induced Fermi level shift in WSe_(2) can be used to manipulate the WSe_(2) channel’s carrier type,resulting in a polarity-reversible photodetector without a bias voltage.Furthermore,the photovoltaic effect can be observed from wavelengths of 450 nm(visible) to 850 nm(infrared) without external voltage.The large open voltage is -0.177 V and short-circuit current is 17 nA under a 650-nm excitation wavelength.The reported WSe_(2)-based photodetector exhibits excellent properties under zero bias,including a large photo-to-dark current ratio greater than 10^(6) with dark current less than 1 fA,photovoltaic performance with an external quantum efficiency of 27.14%,an excellent detectivity of 3.4×10^(10) Jones,and a high responsivity of 116.38 mA/W.Rapid electron transfer occurs at the interface between WSe_(2) and vd Ws electrodes,resulting in a 370-μs response speed owing to the clean and nondestructive interfaces between vd Ws metals and WSe_(2).This study demonstrates the wide application prospect of the vd Ws metal Fe_(3)GeTe_(2) as an electrode forming a Schottky junction for realizing a photodetector without an external voltage and accelerates the development of 2 D photosensors with various working modes.展开更多
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2011AA010203the National Basic Research Program of China under Grant Nos 2011CB201704 and 2010CB327502the National Natural Science Foundation of China under Grant Nos 61434006 and 61106074
文摘A 330-500 GHz zero-biased broadband monolithic integrated tripler is reported. The measured results show that the maximum efficiency and the maximum output power are 2% and 194μW at 348 GHz. The saturation characteristic test shows that the output i dB compression point is about -8.5 dBm at 334 GHz and the maximum efficiency is obtained at the point, which is slightly below the 1 dB compression point. Compared with the conventional hybrid integrated circuit, a major advantage of the monolithic integrated circuit is the significant improvement of reliability and consistency. In this work, a terahertz monolithic frequency multiplier at this band is designed and fabricated.
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403203)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302802)+3 种基金the National Natural Science Foundation of China (Grant Nos. 12074002, 12374133, and 11804379)the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01)the supports of the National Natural Science Foundation of China (Grant No. 12274001)the Natural Science Foundation of Anhui Province (Grant No. 2208085MA09)。
文摘We revisited the vortex states of 2H-NbSe_(2) towards zero fields by a low-temperature scanning tunneling microscope.Fine structures of the anisotropic vortex states were distinguished, one is a spatially non-splitting zero bias peak, and the other is an in-gap conductance anomaly resembling evolved crossing features around the center of the three nearest vortices.Both of them distribute solely along the next nearest neighboring direction of the vortex lattice and become unresolved in much higher magnetic fields, implying an important role played by the vortex–vortex interactions. To clarify these issues,we have studied the intrinsic vortex states of the isolated trapped vortex in zero fields at 0.45 K. It is concluded that the anisotropic zero bias peak is attributed to the superconducting gap anisotropy, and the spatially evolved crossing features are related to the vortex–vortex interaction. The vortex core size under the zero-field limit is determined. These results provide a paradigm for studying the inherent vortex states of type-II superconductors especially based on an isolated vortex.
基金Supported by the National Natural Science Foundation of China (No.60175020) the National High Tech Development '863' Program of China (No.2002AA117010-09).
文摘This letter adopts a GA (Genetic Algorithm) approach to assist in learning scaling of features that are most favorable to SVM (Support Vector Machines) classifier, which is named as GA-SVM. The relevant coefficients of various features to the classification task, measured by real-valued scaling, are estimated efficiently by using GA. And GA exploits heavy-bias operator to promote sparsity in the scaling of features. There are many potential benefits of this method:Feature selection is performed by eliminating irrelevant features whose scaling is zero, an SVM classifier that has enhanced generalization ability can be learned simultaneously. Experimental comparisons using original SVM and GA-SVM demonstrate both economical feature selection and excellent classification accuracy on junk e-mail recognition problem and Internet ad recognition problem. The experimental results show that comparing with original SVM classifier, the number of support vector decreases significantly and better classification results are achieved based on GA-SVM. It also demonstrates that GA can provide a simple, general, and powerful framework for tuning parameters in optimal problem, which directly improves the recognition performance and recognition rate of SVM.
基金ACKNOWLEDGMENTS We thank Professor Wan-zhen Liang for helpful discussion. This work was completed in her group. This work was supported by the National Natural Science Foundation of China (No.20773112 and No.10674121), the National Key Basic Research Program (No.2006CB922000), the Science and Technological Fund of Anhui Province for Outstanding Youth (No.08040106833), the USTC-HP HPC project, and the SCCAS and Shanghai Supercomputer Center.
文摘The electronic transport properties of oligoacenes sandwiched between two Au(111) surfaces with serial and parrallel configurations were investigeted by using a fully self-consistent nonequilibrium Green's function method combined with density functional calculations. This theoretical results show that the conductivity of oligoacenes with both sandwiched configurations at low bias voltage is mainly determined by the tail of the transmission peak from the perturbed highest occupied molecular orbital. When the molecular length increases, the zero-bias voltage conductance G(0) of oligoacenes with serial configuration neither follows Magoga's exponential law nor displays the even-odd oscillation effect, while the G(O) of the oligoacenes sandwiched with parallel configuration monotonically increases. The reduction of energy gaps, the alignment of the Fermi level, and the spatial distribution of the perturbed molecular orbitals are used to self-consistently explore the transport mechanism through oligoacenes.
文摘By solving the Bogoliubov-de Gennes equation, the influence of the interplay of Rashba spin-orbit coupling, induced superconducting pair potential, and external magnetic field on the spin-polarized coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions is investigated based on the Blonder-Tinkham-Klapwijk theory. The coherence effect is characterized by the strong oscillations of the charge conductance as a function of the bias voltage or the thickness of the semiconductor nanowire, resulting from the quantum interference of incoming and outgoing quasiparticles in the nanowire. Such oscillations can be effectively modulated by varying the strength of the Rashba spin-orbit coupling, the thickness of the nanowire, or the strength of the external magnetic field. It is also shown that two different types of zero-bias conductance peaks may occur under some particular conditions, which have some different characteristics and may be due to different mechanisms.
基金supported by the National Natural Science Foundation of China (Grant No.51972006)the Beijing Postdoctoral Work Funding Project (Grant No.Q6043001202101)。
文摘A self-driven photosensor with signal-reversal response has the potential to work as a photodetector in complex environments with multiple signals owing to better signal recognition and enhanced signal-processing efficiency.Herein,a metal-semiconductor-metal photodetector based on ambipolar WSe_(2) with two electrodes comprising two-dimensional(2 D) van der Waals(vdWs) metal Fe_(3)GeTe_(2) and semimetal graphene was proposed to form an asymmetrical metal-contacted architecture with different Schottky barrier heights.The regulating gate field-induced Fermi level shift in WSe_(2) can be used to manipulate the WSe_(2) channel’s carrier type,resulting in a polarity-reversible photodetector without a bias voltage.Furthermore,the photovoltaic effect can be observed from wavelengths of 450 nm(visible) to 850 nm(infrared) without external voltage.The large open voltage is -0.177 V and short-circuit current is 17 nA under a 650-nm excitation wavelength.The reported WSe_(2)-based photodetector exhibits excellent properties under zero bias,including a large photo-to-dark current ratio greater than 10^(6) with dark current less than 1 fA,photovoltaic performance with an external quantum efficiency of 27.14%,an excellent detectivity of 3.4×10^(10) Jones,and a high responsivity of 116.38 mA/W.Rapid electron transfer occurs at the interface between WSe_(2) and vd Ws electrodes,resulting in a 370-μs response speed owing to the clean and nondestructive interfaces between vd Ws metals and WSe_(2).This study demonstrates the wide application prospect of the vd Ws metal Fe_(3)GeTe_(2) as an electrode forming a Schottky junction for realizing a photodetector without an external voltage and accelerates the development of 2 D photosensors with various working modes.