期刊文献+
共找到277篇文章
< 1 2 14 >
每页显示 20 50 100
Use of Linear Spectral Mixture Model to Estimate Rice Planted Area Based on MODIS Data 被引量:2
1
作者 WANG Lei Satoshi UCHID 《Rice science》 SCIE 2008年第2期131-136,共6页
MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classi... MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classification of land covers. Shaoxing county of Zhejiang Province in China was chosen to be the study site and early rice was selected as the study crop. The derived proportions of land covers from MODIS pixel using linear spectral mixture models were compared with unsupervised classification derived from TM data acquired on the same day, which implies that MODIS data could be used as satellite data source for rice cultivation area estimation, possibly rice growth monitoring and yield forecasting on the regional scale. 展开更多
关键词 RICE planted area Moderate Resolution Imaging Spectroradiometer Thematic Mapper data mixed pixel linear spectral mixture model
下载PDF
Modelling the Survival of Western Honey Bee Apis mellifera and the African Stingless Bee Meliponula ferruginea Using Semiparametric Marginal Proportional Hazards Mixture Cure Model
2
作者 Patience Isiaho Daisy Salifu +1 位作者 Samuel Mwalili Henri E. Z. Tonnang 《Journal of Data Analysis and Information Processing》 2024年第1期24-39,共16页
Classical survival analysis assumes all subjects will experience the event of interest, but in some cases, a portion of the population may never encounter the event. These survival methods further assume independent s... Classical survival analysis assumes all subjects will experience the event of interest, but in some cases, a portion of the population may never encounter the event. These survival methods further assume independent survival times, which is not valid for honey bees, which live in nests. The study introduces a semi-parametric marginal proportional hazards mixture cure (PHMC) model with exchangeable correlation structure, using generalized estimating equations for survival data analysis. The model was tested on clustered right-censored bees survival data with a cured fraction, where two bee species were subjected to different entomopathogens to test the effect of the entomopathogens on the survival of the bee species. The Expectation-Solution algorithm is used to estimate the parameters. The study notes a weak positive association between cure statuses (ρ1=0.0007) and survival times for uncured bees (ρ2=0.0890), emphasizing their importance. The odds of being uncured for A. mellifera is higher than the odds for species M. ferruginea. The bee species, A. mellifera are more susceptible to entomopathogens icipe 7, icipe 20, and icipe 69. The Cox-Snell residuals show that the proposed semiparametric PH model generally fits the data well as compared to model that assume independent correlation structure. Thus, the semi parametric marginal proportional hazards mixture cure is parsimonious model for correlated bees survival data. 展开更多
关键词 mixture Cure Models Clustered Survival data Correlation Structure Cox-Snell Residuals EM Algorithm Expectation-Solution Algorithm
下载PDF
Identification of Best Model for Equilibrium Data of Ethanol-Water Mixture
3
作者 Bilel Hadrich Nabil Kechaou 《Journal of Chemistry and Chemical Engineering》 2010年第6期46-48,共3页
Four empirical models are tested for fitting the T-y-x equilibrium data of ethanol-water mixture by minimizing the Root Mean Square (RMS) between equilibrium data and theoretical points. The total pressure of the co... Four empirical models are tested for fitting the T-y-x equilibrium data of ethanol-water mixture by minimizing the Root Mean Square (RMS) between equilibrium data and theoretical points. The total pressure of the correspondent data is 101.3 kPa. All models parameters are also identified. The study suggests that NRTL model fits the equilibrium data best with RMS = 0.4 %. 展开更多
关键词 Equilibrium datas MODELS ethanol-water mixture.
下载PDF
Gaussian mixture models for clustering and classifying traffic flow in real-time for traffic operation and management 被引量:1
4
作者 孙璐 张惠民 +3 位作者 高荣 顾文钧 徐冰 陈鲤梁 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期174-179,共6页
Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM ... Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc. 展开更多
关键词 traffic flow patterns Gaussian mixture model level of service data mining cluster analysis CLASSIFIER
下载PDF
A multi-target tracking algorithm based on Gaussian mixture model 被引量:3
5
作者 SUN Lili CAO Yunhe +1 位作者 WU Wenhua LIU Yutao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期482-487,共6页
Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is ... Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is proposed.The algorithm is used to cluster the measurements,and the association matrix between measurements and tracks is constructed by the posterior probability.Compared with the traditional data association algorithm,this algorithm has better tracking performance and less computational complexity.Simulation results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 multiple-target tracking Gaussian mixture model(GMM) data association expectation maximization(EM)algorithm
下载PDF
Robust state of charge estimation of lithium-ion battery via mixture kernel mean p-power error loss LSTM with heap-based-optimizer 被引量:1
6
作者 Wentao Ma Yiming Lei +1 位作者 Xiaofei Wang Badong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期768-784,I0016,共18页
The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,whi... The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,which is capable of estimating the future changing states of a nonlinear system.Since the BMS usually works under complicated operating conditions,i.e the real measurement data used for model training may be corrupted by non-Gaussian noise,and thus the performance of the original LSTM with the mean square error(MSE)loss may deteriorate.Therefore,a novel LSTM with mixture kernel mean p-power error(MKMPE)loss,called MKMPE-LSTM,is developed by using the MKMPE loss to replace the MSE as the learning criterion in LSTM framework,which can achieve robust SOC estimation under the measurement data contaminated with non-Gaussian noises(or outliers)because of the MKMPE containing the p-order moments of the error distribution.In addition,a meta-heuristic algorithm,called heap-based-optimizer(HBO),is employed to optimize the hyper-parameters(mainly including learning rate,number of hidden layer neuron and value of p in MKMPE)of the proposed MKMPE-LSTM model to further improve its flexibility and generalization performance,and a novel hybrid model(HBO-MKMPE-LSTM)is established for SOC estimation under non-Gaussian noise cases.Finally,several tests are performed under various cases through a benchmark to evaluate the performance of the proposed HBO-MKMPE-LSTM model,and the results demonstrate that the proposed hybrid method can provide a good robustness and accuracy under different non-Gaussian measurement noises,and the SOC estimation results in terms of mean square error(MSE),root MSE(RMSE),mean absolute relative error(MARE),and determination coefficient R2are less than 0.05%,3%,3%,and above 99.8%at 25℃,respectively. 展开更多
关键词 SOC estimation Long short term memory model mixture kernel mean p-power error Heap-based-optimizer Lithium-ion battery Non-Gaussian noisy measurement data
下载PDF
Mixture Models for Estimating the Number of Drug Users in Thailand 2005-2007
7
作者 Chukiat Viwatwongkasem Pratana Satitvipawee +1 位作者 Suthi Jareinpituk Pichitpong Soontornpipit 《Applied Mathematics》 2013年第9期1242-1250,共9页
It is difficult to measure the sizes of illegal drug user populations directly by using the survey method because of many “hidden drug addicts” and the difficulty of receiving a true response. Systematic and routine... It is difficult to measure the sizes of illegal drug user populations directly by using the survey method because of many “hidden drug addicts” and the difficulty of receiving a true response. Systematic and routine information on treatment episodes of drug users is adopted to estimate the population size in this study. Mixture models of zero-truncated Poisson distributions using the nonparametric maximum likelihood estimators (NPMLE) by means of capture-recapture repeated count data were used to project the number of drug users. The method was applied to surveillance data of drug users identified by treatment episodes in over 1140 health treatment centers in Thailand from the Bureau of Health Service System Development, Ministry of Public Health. We presented how this mixture model could be utilized to construct the unobserved frequency of drug users with no treatment episode and further estimated the total population size of drug users in the country from 2005 to 2007. The result of simulation was confirmed that mixture model is suitable when population is large. By means of mixture models, the estimations for the number of drug users were fitted with excellent goodness-of-fit values and we were also compared to the conventional Chao estimates. The NPMLE for the total number of drug users in Thailand 2005, 2006, and 2007 were 184,045 (95% CI: 181,297-86,793), 230,665 (95% CI: 226,611-234,719), 299,670 (95% CI: 294,217-305,123), respectively, also 125,265 (95% CI: 123,092-127,142), 166,287 (95% CI: 163,222-169,352), 228,898 (95% CI: 224,766 - 233,030) for the number of methamphetamine (Yaba) users, and 11,559 (95% CI: 10,234-12,884), 11,333 (95% CI: 9276-13,390), 8953 (95% CI: 7878-10,028) for the number of heroin users, respectively. The numbers of marijuana, kratom-plant, opium, and inhalant users were underestimated because their symptoms were mild and not severe enough to remedy in health treatment centers which led to the smaller size of the total number of drug users. The well-estimated sizes of heroin and methamphetamine addicts are high reliable because they are based on clearly evident count with a severe addiction problem to health treatment centers. The estimation by means of mixture models can be recommended to monitor drug demand trend and drug health service routinely;it is easy to calculate via the available programs MIXTP based on request. 展开更多
关键词 CAPTURE-RECAPTURE COUNT data DRUG Use in Thailand mixture Models of Zero-Truncated POISSON
下载PDF
Modeling Cyber Loss Severity Using a Spliced Regression Distribution with Mixture Components
8
作者 Meng Sun 《Open Journal of Statistics》 2023年第4期425-452,共28页
Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the... Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the whole range of the losses using a standard loss distribution. We tackle this modeling problem by proposing a three-component spliced regression model that can simultaneously model zeros, moderate and large losses and consider heterogeneous effects in mixture components. To apply our proposed model to Privacy Right Clearinghouse (PRC) data breach chronology, we segment geographical groups using unsupervised cluster analysis, and utilize a covariate-dependent probability to model zero losses, finite mixture distributions for moderate body and an extreme value distribution for large losses capturing the heavy-tailed nature of the loss data. Parameters and coefficients are estimated using the Expectation-Maximization (EM) algorithm. Combining with our frequency model (generalized linear mixed model) for data breaches, aggregate loss distributions are investigated and applications on cyber insurance pricing and risk management are discussed. 展开更多
关键词 Cyber Risk data Breach Spliced Regression Model Finite mixture Distribu-tion Cluster Analysis Expectation-Maximization Algorithm Extreme Value Theory
下载PDF
Estimating the Components of a Mixture of Extremal Distributions under Strong Dependence
9
作者 Carolina Crisci Gonzalo Perera Lia Sampognaro 《Advances in Pure Mathematics》 2023年第7期425-441,共17页
In this paper, we provide a method based on quantiles to estimate the parameters of a finite mixture of Fréchet distributions, for a large sample of strongly dependent data. This is a situation that appears when ... In this paper, we provide a method based on quantiles to estimate the parameters of a finite mixture of Fréchet distributions, for a large sample of strongly dependent data. This is a situation that appears when dealing with environmental data and there was a real need of such method. We validate our approach by means of estimation and goodness-of-fit testing over simulated data, showing an accurate performance. 展开更多
关键词 mixture of Extremal Distributions Strongly Dependent data
下载PDF
Fault detection and diagnosis for data incomplete industrial systems with new Bayesian network approach 被引量:15
10
作者 Zhengdao Zhang Jinlin Zhu Feng Pan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期500-511,共12页
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d... For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements. 展开更多
关键词 fault detection and diagnosis Bayesian network Gaussian mixture model data incomplete non-imputation.
下载PDF
Multimode Process Monitoring Based on the Density-Based Support Vector Data Description
11
作者 郭红杰 王帆 +2 位作者 宋冰 侍洪波 谭帅 《Journal of Donghua University(English Edition)》 EI CAS 2017年第3期342-348,共7页
Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the... Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the samples which are sparse in the mode.To solve this issue,a new approach called density-based support vector data description( DBSVDD) is proposed. In this article,an algorithm using Gaussian mixture model( GMM) with the DBSVDD technique is proposed for process monitoring. The GMM method is used to obtain the center of each mode and determine the number of the modes. Considering the complexity of the data distribution and discrete samples in monitoring process,the DBSVDD is utilized for process monitoring. Finally,the validity and effectiveness of the DBSVDD method are illustrated through the Tennessee Eastman( TE) process. 展开更多
关键词 Eastman Tennessee sparse utilized illustrated kernel Bayesian charts validity false
下载PDF
含共享储能的数据中心微网群分布式优化调度
12
作者 王继东 许秋铭 +1 位作者 黄婷 孔祥玉 《电网技术》 EI CSCD 北大核心 2024年第8期3238-3247,I0056,I0058-I0063,共17页
多个数据中心微网可联合成微网群以实现不同数据中心微网的资源联动和能量互补。首先,建立了含共享储能的数据中心微网群运行模型,考虑了不同数据中心微网间的功率交互、数据负载交互、碳配额交互及共享储能容量使用权分配等耦合约束。... 多个数据中心微网可联合成微网群以实现不同数据中心微网的资源联动和能量互补。首先,建立了含共享储能的数据中心微网群运行模型,考虑了不同数据中心微网间的功率交互、数据负载交互、碳配额交互及共享储能容量使用权分配等耦合约束。其次,提出了考虑时变容量使用权和旋转备用服务的共享储能容量分配与运行策略,以进一步提高共享储能的效能。然后,采用高斯混合模型对数据中心微网内可再生发电的预测误差概率分布进行精确拟合,并结合机会约束处理预测误差的不确定性。最后,通过交替方向乘子法实现各个数据中心微网的独立求解,并引入动态乘子更新策略和预测-矫正因子以提高算法的收敛性。所提模型与方法的有效性在仿真中得到验证。 展开更多
关键词 数据中心微网 多资源交互 共享储能 分布式优化 高斯混合机会约束
下载PDF
基于GMM的纳米制造刀具磨损状态在线识别
13
作者 程菲 江子湛 《计算机集成制造系统》 EI CSCD 北大核心 2024年第11期4075-4086,共12页
为满足纳米制造刀具磨损状态在线诊断对时间和精度的要求,采用跨物理数据融合建模方案,建立具有物理一致性的高斯混合模型(GMM),以动态识别原子力显微镜(AFM)尖端状态。随机抽取历史加工数据,提取特征参数并进行训练,获得3维GMM模型并预... 为满足纳米制造刀具磨损状态在线诊断对时间和精度的要求,采用跨物理数据融合建模方案,建立具有物理一致性的高斯混合模型(GMM),以动态识别原子力显微镜(AFM)尖端状态。随机抽取历史加工数据,提取特征参数并进行训练,获得3维GMM模型并预存;以加窗分帧的形式,截取连续过程中短时段纳米加工力时变信号,构成瞬时稳态数据空间;以尖端旋转周期为时间单位,计算横向加工力的特征参数:极大值、峰-峰值和方差;采用马氏距离检测并去除异常值。使用预存的GMM模型,对每帧特征参数聚类,识别尖端磨损状态;根据连续分析帧的尖端失效点数据变化曲线,探测跟踪尖端状态。实验证明该算法平均识别精度为0.8917,平均召回率为0.963;每2000个点的最长识别时间为31ms,平均识别时间为23.97ms,适用于大规模纳米制造的刀具磨损在线自动诊断。 展开更多
关键词 纳米加工 刀具磨损在线诊断 高斯混合模型 机器学习 数据融合集成制造
下载PDF
单纯形格点剖分下的混料型数据的分类算法
14
作者 李光辉 李俊鹏 陈守维 《佳木斯大学学报(自然科学版)》 CAS 2024年第7期168-172,共5页
为了实现混料型数据的分类与识别,提出一类单纯形剖分算法.首先给出了混料系统和置换点集的概念,然后提出了两类正规单纯形剖分方法,进而对混料型数据进行分类识别,通过实例验证,单纯形剖分方法对于混料数据的分类是有效的.
关键词 混料数据 格子点集 置换点集
下载PDF
面向电力设备异常检测的深度自编码支持向量数据描述模型研究
15
作者 耿波 潘曙辉 董晓旭 《湖南电力》 2024年第1期119-127,共9页
针对深度自编码支持向量数据描述模型对电力设备部分异常区分能力不足的问题,提出自监督混合专家增强的深度自编码支持向量数据描述模型,构造多种自监督变换数据集模拟潜在未知异常,引入自监督分类和掩码重构任务以学习更具区分性的表... 针对深度自编码支持向量数据描述模型对电力设备部分异常区分能力不足的问题,提出自监督混合专家增强的深度自编码支持向量数据描述模型,构造多种自监督变换数据集模拟潜在未知异常,引入自监督分类和掩码重构任务以学习更具区分性的表示。此外,将编码器部分改造为混合专家模型结构,将数据分配给不同专家子模块进行专业化的学习,使异常决策边界更清晰。在4个公开数据集和3个电厂设备数据集上的实验结果证实了自监督学习和混合专家模型的有效性。 展开更多
关键词 异常检测 深度自编码支持向量数据描述 自监督学习 混合专家模型
下载PDF
基于即时学习的改进条件高斯回归软测量 被引量:1
16
作者 黎宏陶 王振雷 王昕 《化工学报》 EI CSCD 北大核心 2024年第6期2299-2312,共14页
基于数据驱动的在线软测量是当前工业智能化感知的重要研究方向。在算法实际部署中,过程模态切换以及数据漂移都会导致软测量性能下降,传统自适应方法又存在模型单一、模态遗忘等不足。针对上述问题提出一种基于即时学习的样本时空加权... 基于数据驱动的在线软测量是当前工业智能化感知的重要研究方向。在算法实际部署中,过程模态切换以及数据漂移都会导致软测量性能下降,传统自适应方法又存在模型单一、模态遗忘等不足。针对上述问题提出一种基于即时学习的样本时空加权条件高斯回归(STWCGR)软测量算法。该方法用概率密度估计和条件概率计算实现软测量建模和预测:首先根据即时学习思想通过样本时空混合加权方法筛选局部建模数据,然后结合高斯混合回归思想累积局部单高斯概率密度模型对数据分布进行拟合,最后引入预测动量更新和模态更新策略提高预测稳定性并赋予模型对新工况的学习适应能力。通过仿真实验验证了所提方法在预测精度、稳定性以及新模态适应能力上的有效性。 展开更多
关键词 智能感知 数据驱动软测量 预测 即时学习 高斯混合回归
下载PDF
基于混合高斯先验变分自编码器的深度多球支持向量数据描述
17
作者 武慧囡 邢红杰 李刚 《计算机科学》 CSCD 北大核心 2024年第6期135-143,共9页
随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ... 随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。 展开更多
关键词 深度支持向量数据描述 混合高斯先验 变分自编码器 异常检测 超球崩溃
下载PDF
基于高斯混合模型的分布因子聚类方法
18
作者 朱映秋 黄丹阳 张波 《统计研究》 CSSCI 北大核心 2024年第6期147-160,共14页
随着信息技术的发展,人类社会产生的数据规模越来越庞大、形式越来越复杂,对聚类分析形成了巨大挑战。在越来越多的应用场景中,观测数据具有相互关联、层次嵌套的结构,使传统聚类方法难以直接适用。通常的解决方案是采用特征工程方法将... 随着信息技术的发展,人类社会产生的数据规模越来越庞大、形式越来越复杂,对聚类分析形成了巨大挑战。在越来越多的应用场景中,观测数据具有相互关联、层次嵌套的结构,使传统聚类方法难以直接适用。通常的解决方案是采用特征工程方法将观测信息压缩为低维特征向量进行聚类,但这将带来不可避免的信息损失。为充分利用观测数据,本文以分布函数表示聚类对象,大幅降低信息损失,进而提出基于高斯混合模型的分布因子模型。该模型将聚类对象的观测数据分解为两部分,一是以高斯成分表示的公共因子,反映数据中具有共性的典型模式;二是载荷矩阵,矩阵中每个载荷向量反映个体的异质性特征。估计得到载荷向量后即可对不同个体实现聚类划分。本文提出的方法具有优良的统计学效率,能够证明在一定假设条件下聚类误差率能够随着观测个体数目的发散而趋近于0。基于模拟数据和股票收益、大气污染实际数据的实验表明,该方法能够区分具有不同特征模式的个体,解决多维数据的分布函数聚类问题,并为金融风险管理、空气质量的差异化治理等现实问题提供决策支持。 展开更多
关键词 聚类 分布函数 高斯混合模型 复杂数据
下载PDF
基于高斯混合模型及EM算法的建筑工程数据预警治理方法 被引量:1
19
作者 张静雯 耿天宝 《科学技术创新》 2024年第8期192-195,共4页
结合初期雨水调蓄大直径顶管工程的实际设计及施工经验,对软弱地层条件下长距离大直径平行双管曲线顶管在设计及施工过程中存在的重点难点问题进行总结,并对顶管过程中的顶力及管周摩阻力做了深入分析研究,有针对性地提出了相应的解决方... 结合初期雨水调蓄大直径顶管工程的实际设计及施工经验,对软弱地层条件下长距离大直径平行双管曲线顶管在设计及施工过程中存在的重点难点问题进行总结,并对顶管过程中的顶力及管周摩阻力做了深入分析研究,有针对性地提出了相应的解决方案,使该顶管工程顺利贯通。建筑工程行业在现代社会中发挥着重要的经济和社会作用,然而,它也伴随着诸多风险和不确定性。为了有效地管理和预测这些风险,本文提出了一种基于高斯混合模型(GMM)和期望最大化(EM)算法的数据预警治理方法。该方法旨在通过对建筑工程数据的建模和分析,提前识别潜在的问题和风险,从而改善工程项目的管理和决策。 展开更多
关键词 GMM高斯混合模型 EM算法 数据预警治理 正态分布曲线 后验概率
下载PDF
基于混合高斯模型的无相位线路阻抗参数估计方法
20
作者 王可淇 钟俊 赵子涵 《电工技术》 2024年第8期130-134,共5页
输电线路阻抗参数的准确估计是配电网可靠分析的基础。已有方法估计线路阻抗需要利用测量电压电流的相位信息,但当实测数据相位角缺失时,已有方法将失效。对此,提出了一种基于混合高斯模型的无相位线路阻抗参数估计方法,该方法仅需要线... 输电线路阻抗参数的准确估计是配电网可靠分析的基础。已有方法估计线路阻抗需要利用测量电压电流的相位信息,但当实测数据相位角缺失时,已有方法将失效。对此,提出了一种基于混合高斯模型的无相位线路阻抗参数估计方法,该方法仅需要线路两端的电压幅值、有功功率和无功功率的实测数据。首先由电力线路的潮流关系建立含误差的线路阻抗估计模型,然后考虑到测量环境存在噪声干扰,通过引入双隐变量,将含误差的线路阻抗估计模型转化为混合高斯模型,得到线路阻抗的概率分布,并利用最大后验估计得到线路阻抗参数估计值,最后通过仿真验证所提方法能有效估计线路阻抗的大小,为相位缺失场景下的线路阻抗估计提供一个新策略。 展开更多
关键词 电力线路阻抗 混合高斯模型 实测数据相位角缺失 噪声误差 最大后验估计
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部