期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
ASYMPTOTIC LIMITS OF ONE-DIMENSIONAL HYDRODYNAMIC MODELS FOR PLASMAS AND SEMICONDUCTORS
1
作者 PENG YUEJUN Laboratoire de Mathematiques Appliquees, CNRS UMR 6620, Universite Blaise Pascal (Clermont-Ferrand 2), F-63177 Aubiere cedex, France. E-mail: peng@math.univ-bpclermont.fr 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2002年第1期25-36,共12页
This paper studies the zero-electron-mass limit, the quasi-neutral limit and the zero-relaxation-time limit in one-dimensional hydrodynamic models of Euler-Poisson system for plasmas and semiconductors. For each limit... This paper studies the zero-electron-mass limit, the quasi-neutral limit and the zero-relaxation-time limit in one-dimensional hydrodynamic models of Euler-Poisson system for plasmas and semiconductors. For each limit in the steady-state models, the author proves the strong convergence of the sequence of solutions and gives the corresponding convergence rate. In the time-dependent models, the author shows some useful estimates for the quasi-neutral limit and the zero-electron-mass limit. This study completes the analysis made in [11,12,13,14,19]. 展开更多
关键词 zero-electron-mass limit Quasi-neutral limit Zero-relaxation-time limit Hydrodynamic models PLASMAS SEMICONDUCTORS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部